Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(4): 5268-5277, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38206307

RESUMO

Area-selective depositions (ASD) take advantage of the chemical contrast between material surfaces in device fabrication, where a film can be selectively grown by chemical vapor deposition on metal versus a dielectric, for instance, and can provide a path to nontraditional device architectures as well as the potential to improve existing device fabrication schemes. While ASD can be accessed through a variety of methods, the incorporation of reactive moieties in inhibitors presents several advantages, such as increasing thermal stability and limiting precursor diffusion into the blocking layer. Alkyne-terminated small molecule inhibitors (SMIs)─propargyl, dipropargyl, and tripropargylamine─were evaluated as metal-selective inhibitors. Modeling these SMIs provided insight into the binding mechanism, influence of sterics, and complex polymer network formed from the reaction between inhibitors consisting of alkene, aromatic, and network branchpoints. While a significant contrast in the binding of the SMIs on copper versus a dielectric was observed, residual amounts were detected on the dielectric surfaces, leading to variable ALD growth rates dependent on pattern-critical dimensions. This behavior can be controlled and utilized to direct film growth on patterns only above a critical threshold dimension; below this threshold, both the dielectric and metal features are protected. This method provides another design parameter for ASD processes and may extend its application to broader-ranging device fabrication schemes.

2.
Nat Commun ; 13(1): 1941, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410416

RESUMO

Macroscale additive manufacturing has seen significant advances recently, but these advances are not yet realized for the bottom-up formation of nanoscale polymeric features. We describe a platform technology for creating crosslinked polymer features using rapid surface-initiated crosslinking and versatile macrocrosslinkers, delivered by a microfluidic-coupled atomic force microscope known as FluidFM. A crosslinkable polymer containing norbornene moieties is delivered to a catalyzed substrate where polymerization occurs, resulting in extremely rapid chemical curing of the delivered material. Due to the living crosslinking reaction, construction of lines and patterns with multiple layers is possible, showing quantitative material addition from each deposition in a method analogous to fused filament fabrication, but at the nanoscale. Print parameters influenced printed line dimensions, with the smallest lines being 450 nm across with a vertical layer resolution of 2 nm. This nanoscale 3D printing platform of reactive polymer materials has applications for device fabrication, optical systems and biotechnology.


Assuntos
Polímeros , Impressão Tridimensional , Polimerização , Tecnologia
3.
ACS Appl Mater Interfaces ; 13(7): 9081-9090, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33471496

RESUMO

The combination of area-selective deposition (ASD) with a patternable organic monolayer provides a versatile additive lithography platform, enabling the generation of a variety of nanoscale feature geometries. Stearate hydroxamic acid self-assembled monolayers (SAMs) were patterned with extreme ultraviolet (λ = 13.5 nm) or electron beam irradiation and developed with ASD to achieve line space patterns as small as 50 nm. Density functional theory was employed to aid in the synthesis of hydroxamic acid derivatives with optimized packing density to enhance the imaging contrast and improve dose sensitivity. Near-edge X-ray absorption fine structure spectroscopy and infrared spectroscopy reveal that the imaging mechanism is based on improved deposition inhibition provided by the cross-linking of the SAM to produce a more effective barrier during a subsequent deposition step. With patterned substrates composed of coplanar copper lines and silicon spacers, hydroxamic acids selectively formed monolayers on the metal portions and could undergo a pattern-wise exposure followed by ASD in the first combination of a patternable monolayer with ASD. This material system presents an additional capability compared to traditional ASD approaches that generally reflect a starting patterned surface. Furthermore, this bottoms-up additive approach to lithography may be a viable alternative to subtractive nanoscale feature generation.

4.
ACS Nano ; 14(4): 4276-4288, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167284

RESUMO

The area selective growth of polymers and their use as inhibiting layers for inorganic film depositions may provide a valuable self-aligned process for fabrication. Polynorbornene (PNB) thin films were grown from surface-bound initiators and show inhibitory properties against the atomic layer deposition (ALD) of ZnO and TiO2. Area selective control of the polymerization was achieved through the synthesis of initiators that incorporate surface-binding ligands, enabling their selective attachment to metal oxide features versus silicon dielectrics, which were then used to initiate surface polymerizations. The subsequent use of these films in an ALD process enabled the area selective deposition (ASD) of up to 39 nm of ZnO. In addition, polymer thickness was found to play a key role, where films that underwent longer polymerization times were more effective at inhibiting higher numbers of ALD cycles. Finally, while the ASD of a TiO2 film was not achieved despite blanket studies showing inhibition, the ALD deposition on polymer regions of a patterned film produced a different quality metal oxide and therefore altered its etch resistance. This property was exploited in the area selective etch of a metal feature. This demonstration of an area selective surface-grown polymer to enable ASD and selective etch has implications for the fabrication of both micro- and nanoscale features and surfaces.

5.
ACS Appl Mater Interfaces ; 12(3): 4041-4051, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31741381

RESUMO

The ability to modify substrates with thin polymer films allows for the tailoring of surface properties, and through combination of patterning finds use in a large variety of applications such as electronics and lab-on-chip devices. Although many techniques can be used to afford polymer-modified surfaces such as surface-initiated polymerization or layer-by-layer methodologies, their stability in a wide range of environments as well as their ability to target specific chemistry are critical factors to enable their successful application. In this paper, we report a facile technique in creating nanoscale polymer thin films using solid-state continuous assembly of polymers via ring-opening metathesis polymerization (ssCAPROMP) directly from surfaces functionalized through silanization. Using a polymeric precursor that includes norbornene moieties, a highly dense cross-linked network of polymer can be grown in a bottom-up fashion to afford thin films from an olefin-terminated silanized planar surface. Such nanotechnology affords films retaining the desirable qualities of previously reported methods while, at the same time, being covalently bound to the substrate: they are virtually pinhole free and can be reinitiated multiple times. By combining this process with microcontact printing, patterned films can be created by either the patterned deposition of a catalyst or by controlling the surface silanization chemistry and placement of olefin-terminated and nonreactive silanes. Additionally, patterned ssCAPROMP films were grown from SU-8 by selectively functionalizing the surface through masking and lift-off processes after the silanization step, thereby spatially controlling the surface-initiation, and subsequent polymer film formation. These patterned films expand the capabilities of the CAPROMP process and offer advantages over other film formation techniques in processes where patterned substrates and modified but robust surface chemistries are utilized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...