Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 317: 97-107, 2016 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-27262277

RESUMO

Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly (137)Cs and (90)Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (µXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO2 particles in the paint layers, suggesting an association between TiO2 and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. µXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK's nuclear decommissioning efforts.

2.
Sci Rep ; 5: 15979, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26514938

RESUMO

We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography.

3.
Rev Sci Instrum ; 86(4): 046105, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933903

RESUMO

Evaluating the radiation stability of mineral phases is a vital research challenge when assessing the performance of the materials employed in a Geological Disposal Facility for radioactive waste. This report outlines the setup and methodology for efficiently allowing the determination of the dose dependence of damage to a mineral from a single ion irradiated sample. The technique has been deployed using the Dalton Cumbrian Facility's 5 MV tandem pelletron to irradiate a suite of minerals with a controlled α-particle ((4)He(2+)) beam. Such minerals are proxies for near-field clay based buffer material surrounding radioactive canisters, as well as the sorbent components of the host rock.

4.
Environ Sci Technol ; 48(12): 6891-8, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24823240

RESUMO

A Serratia sp. bacterium manufactures amorphous calcium phosphate nanominerals (BHAP); this material has shown increased sorption capacity for divalent radionuclide capture. When heat-treated (≥450 °C) the cell biomass is removed and the biominerals are transformed to hydroxyapatite (HAP). Using a multimethod approach, we have elucidated both the site preferences and stability of analogue radionuclide incorporation for Sr, Co, Eu, and U. Strontium incorporates within the bulk amorphous inorganic phase of BHAP; however, once temperature modified to crystalline HAP, bonding was consistent with Sr substitution at the Ca(1) and/or Ca(2) sites. Cobalt incorporation occurs within the bulk inorganic amorphous phase of BHAP and within the amorphous grain boundaries of HAP. Europium (an analogue for trivalent actinides) substituted at the Ca(2) and/or the Ca(3) position of tricalcium phosphate, a known component of HAP grain boundaries. Uranium was surface complexed with no secondary minerals detected. With multiple sites for targeted radionuclide incorporation, high loadings, and good stability against remobilization, BHAP is shown to be a potential material for the remediation of aqueous radionuclide in groundwater.


Assuntos
Bactérias/metabolismo , Fosfatos de Cálcio/metabolismo , Minerais/metabolismo , Nanopartículas/química , Radioisótopos/isolamento & purificação , Adsorção , Biodegradação Ambiental , Durapatita/química , Água Subterrânea/química , Íons , Nanopartículas/ultraestrutura , Tamanho da Partícula , Poluentes Radioativos da Água/isolamento & purificação , Espectroscopia por Absorção de Raios X , Difração de Raios X
5.
J R Soc Interface ; 10(83): 20130134, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23594814

RESUMO

Cobalt-doped magnetite (CoxFe3 -xO4) nanoparticles have been produced through the microbial reduction of cobalt-iron oxyhydroxide by the bacterium Geobacter sulfurreducens. The materials produced, as measured by superconducting quantum interference device magnetometry, X-ray magnetic circular dichroism, Mössbauer spectroscopy, etc., show dramatic increases in coercivity with increasing cobalt content without a major decrease in overall saturation magnetization. Structural and magnetization analyses reveal a reduction in particle size to less than 4 nm at the highest Co content, combined with an increase in the effective anisotropy of the magnetic nanoparticles. The potential use of these biogenic nanoparticles in aqueous suspensions for magnetic hyperthermia applications is demonstrated. Further analysis of the distribution of cations within the ferrite spinel indicates that the cobalt is predominantly incorporated in octahedral coordination, achieved by the substitution of Fe(2+) site with Co(2+), with up to 17 per cent Co substituted into tetrahedral sites.


Assuntos
Cobalto/química , Nanopartículas de Magnetita/química , Geobacter/metabolismo , Magnetismo , Nanotecnologia/métodos , Difração de Raios X
6.
Nanotechnology ; 24(14): 145603, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23508116

RESUMO

Luminescent quantum dots were synthesized using bacterially derived selenide (Se(II-)) as the precursor. Biogenic Se(II-) was produced by the reduction of Se(IV) by Veillonella atypica and compared directly against borohydride-reduced Se(IV) for the production of glutathione-stabilized CdSe and ß-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological Se(II-) formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic Se(II-) included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic Se(II-) is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.


Assuntos
Pontos Quânticos , Compostos de Selênio/metabolismo , Proteínas de Bactérias/metabolismo , Compostos de Cádmio/metabolismo , Glutationa/metabolismo , Luminescência , Metilmalonil-CoA Descarboxilase/metabolismo , Microscopia Eletrônica de Transmissão , Nanotecnologia , Oxirredução , Tamanho da Partícula , Síncrotrons , Veillonella/metabolismo , Espectroscopia por Absorção de Raios X
7.
Geobiology ; 10(4): 347-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22515480

RESUMO

A combination of scanning transmission X-ray microscopy and X-ray magnetic circular dichroism was used to spatially resolve the distribution of different carbon and iron species associated with Shewanella oneidensis MR-1 cells. S. oneidensis MR-1 couples the reduction of Fe(III)-oxyhydroxides to the oxidation of organic matter in order to conserve energy for growth. Several potential mechanisms may be used by S. oneidensis MR-1 to facilitate Fe(III)-reduction. These include direct contact between the cell and mineral surface, secretion of either exogenous electron shuttles or Fe-chelating agents and the production of conductive 'nanowires'. In this study, the protein/lipid signature of the bacterial cells was associated with areas of magnetite (Fe3O4), the product of dissimilatory Fe(III) reduction, which was oversaturated with Fe(II) (compared to stoichiometric magnetite). However, areas of the sample rich in polysaccharides, most likely associated with extracellular polymeric matrix and not in direct contact with the cell surface, were undersaturated with Fe(II), forming maghemite-like (γ-Fe2O3) phases compared to stoichiometric magnetite. The reduced form of magnetite will be much more effective in environmental remediation such as the immobilisation of toxic metals. These findings suggest a dominant role for surface contact-mediated electron transfer in this study and also the inhomogeneity of magnetite species on the submicron scale present in microbial reactions. This study also illustrates the applicability of this new synchrotron-based technique for high-resolution characterisation of the microbe-mineral interface, which is pivotal in controlling the chemistry of the Earth's critical zone.


Assuntos
Microbiologia Ambiental , Compostos Férricos/metabolismo , Sedimentos Geológicos/microbiologia , Shewanella/metabolismo , Microanálise por Sonda Eletrônica , Oxirredução
8.
Nanotechnology ; 22(45): 455709, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22020365

RESUMO

The bioproduction of nanoscale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles have been investigated by x-ray magnetic circular dichroism and indicate the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimized biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently to the less harmful trivalent form.


Assuntos
Óxido Ferroso-Férrico/metabolismo , Geobacter/metabolismo , Nanopartículas de Magnetita/química , Cromo , Dicroísmo Circular , Nanopartículas de Magnetita/ultraestrutura , Magnetometria , Microscopia Eletrônica de Transmissão , Nanotecnologia , Tamanho da Partícula , Difração de Raios X
9.
Environ Sci Technol ; 45(16): 6985-90, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21714547

RESUMO

Biomineral hydroxyapatite (Bio-HAp) produced by Serratia sp. has the potential to be a suitable material for the remediation of metal contaminated waters and as a radionuclide waste storage material. Varying the Bio-HAp manufacturing method was found to influence hydroxyapatite (HAp) properties and consequently the uptake of Sr(2+) and Co(2+). All the Bio-HAp tested in this study were more efficient than the commercially available hydroxyapatite (Com-HAp) for Sr(2+) and Co(2+) uptake. For Bio-HAp the uptake for Sr(2+) and Co(2+) ranged from 24 to 39 and 29 to 78 mmol per 100 g, respectively. Whereas, the uptake of Sr(2+) and Co(2+) by Com-HAp ranged from 3 to 11 and 4 to 18 mmol per 100 g, respectively. Properties that increased metal uptake were smaller crystallite size (<40 nm) and higher surface area (>70 m(2) g(-1)). Organic content which influences the structure (e.g., crystallite arrangement, size and surface area) and composition of Bio-HAp was also found to be important in Sr(2+) and Co(2+) uptake. Overall, Bio-HAp shows promise for the remediation of aqueous metal waste especially since Bio-HAp can be synthesized for optimal metal uptake properties.


Assuntos
Cobalto/metabolismo , Durapatita/metabolismo , Serratia/metabolismo , Estrôncio/metabolismo , Biodegradação Ambiental , Cristalização , Troca Iônica , Íons , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Água/química
10.
J Hazard Mater ; 189(3): 660-9, 2011 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-21300433

RESUMO

Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl(2) and its transformation to Hg(v)(0) represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼ 1.7 µg m(-3)) are below advised safe levels (<25 µg m(-3)) but up to 90 µg m(-3) mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85 wt% (bulk); XPS, SEM-EDS and XANES suggest the presence of residual HgCl(2) as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19 wt%), and analysis demonstrated that the Hg(v)(0) was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se(0) can be used to reduce Hg(v)(0) in long term, slow release environments.


Assuntos
Mercúrio/química , Museus , Nanosferas/química , Selênio/química , Absorção , Monitoramento Ambiental/métodos , Eucalyptus/metabolismo , Geobacter/metabolismo , Mercúrio/toxicidade , Nanopartículas Metálicas/química , Nanopartículas/química , Folhas de Planta/metabolismo , Risco , Sulfetos/química , Temperatura , Difração de Raios X
11.
Geobiology ; 6(3): 285-97, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18462384

RESUMO

The microbial cell offers a highly efficient template for the formation of nanoparticles with interesting properties including high catalytic, magnetic and light-emitting activities. Thus biomineralization products are not only important in global biogeochemical cycles, but they also have considerable commercial potential, offering new methods for material synthesis that eliminate toxic organic solvents and minimize expensive high-temperature and pressure processing steps. In this review we describe a range of bacterial processes that can be harnessed to make precious metal catalysts from waste streams, ferrite spinels for biomedicine and catalysis, metal phosphates for environmental remediation and biomedical applications, and biogenic selenides for a range of optical devices. Recent molecular-scale studies have shown that the structure and properties of bionanominerals can be fine-tuned by subtle manipulations to the starting materials and to the genetic makeup of the cell. This review is dedicated to the late Terry Beveridge who contributed much to the field of biomineralization, and provided early models to rationalize the mechanisms of biomineral synthesis, including those of geological and commercial potential.


Assuntos
Bactérias/metabolismo , Biotecnologia/métodos , Fósseis , Metais Pesados/metabolismo , Minerais/química , Nanoestruturas/química , Biotecnologia/tendências , Catálise , Minerais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...