Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(13)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38100827

RESUMO

The superconducting and structural properties of bilayer thin films based on YBa2Cu3O7-x / YBa2Cu3O7-x+6%BaZrO3heterstructures have been studied. In a broad range of magnetic field strengths and temperatures, the optimal bilayer film comprises 30% YBCO at the substrate interface and 70% YBCO+6%BZO on the top. The critical current density measured for the optimal bilayer structure is shown to outperform the corresponding single layer films up to almost 60%. The obtained results are comprehensively discussed in the light of our previously published theoretical framework (Rivastoet al2023J. Phys.: Condens. Matter35075701:1-10). We conclude that the bilayering provides an efficient and easily applicable way to further increase the performance and applicability of high-temperature superconductors in various applications. Consequently, the bilayer films should be seriously considered as candidates for the upcoming generation of coated conductors.

2.
J Phys Condens Matter ; 35(47)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37552999

RESUMO

The effect of multilayering YBa2Cu3O6+x(YBCO) thin films with sequentially deposited CeO2layers between YBCO layers grown on buffered metallic template is investigated to optimize the self-field critical current densityJc(0). We have obtained that the improvement inJc(0)clearly depends on the YBCO layer thickness and temperature, where at high temperatureJc(0)can be increased even 50% when compared with the single layer YBCO films. Based on our experimental results and theoretical approach to the growth mechanism during multilayer deposition, we have defined a critical thickness for the YBCO layer, where the maximal self-fieldJc(0)is strongly related to the competing issues between the uniform and nonuniform strain relaxation and the formation of dislocations and other defects during the film growth. Our results can be directly utilized in the future coated conductor technology, when maximizing the overall in-fieldJc(B)by combining both the optimal crystalline quality and flux pinning properties typically in bilayer film structures.

3.
J Phys Condens Matter ; 35(7)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36322984

RESUMO

We argue that the current carrying properties of high-temperature superconducting thin films can be further improved, in particular under the mid-field range (B ≈ 0.1-2 T), via introduction of multilayer structures that compromise between good zero field critical current and vortex pinning performance. In this work we focus on a simple bilayer structure consisting of two adjacent layers of pure YBa2Cu3O6+x(YBCO) and BaZrO3(BZO) doped YBCO under magnetic field within the mid-field range oriented parallel to thec-axis of the YBCO unit cell. We have utilized a computational model to simulate the vortex dynamics limited critical current separately from the associated zero field current, which is addressed analytically. The obtained results have allowed us to estimate the optimal layer thicknesses as a function of magnetic field. Our idealized model suggests that the thickness of the doped layer should be substantially smaller than the undoped one, that is around 30% of the total thickness of the film. We have estimated that the current carrying capability of the optimized bilayer structure can be up to 50% higher when compared with corresponding single layer films. Possible deviations from the obtained results associated with the idealized model, most prominently the effect of natural defects, are comprehensively discussed. Our results provide the foundation for the future experimental realization of the proposed bilayer structures. The comparison between the presented results and experimental realization would enable further study of the underlying primitive vortex interactions.

4.
J Phys Condens Matter ; 34(23)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35294932

RESUMO

We introduce a molecular dynamics based simulation model that enables the efficient optimization of complex pinning structures in unpresented wide magnetic field and angular ranges for high-temperature superconductor applications. The fully three-dimensional simulation allows the modeling of the critical current and the associated anisotropy in the presence of any kinds of defects despite their size and orientation. Most prominently, these include artificial defects such as nanorods along with intrinsic weak-links orab-plane oriented stacking faults, for example. In this work, we present and analyze the most fundamental results of the simulation model and compare them indirectly with a wide range of previous experimental and computational observations. With the provided validation for the proposed simulation model, we consider it to be an extremely useful tool in particular for pushing the limits of ampacity in the coated conductor industry.

5.
J Phys Condens Matter ; 34(15)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35078169

RESUMO

The effect ofin situannealing is investigated in Gd0.1Ca0.9MnO3(GCMO) thin films in oxygen and vacuum atmospheres. We show that the reduction of oxygen content in GCMO lattice by vacuum annealing induced more oxygen complex vacancies in both subsurface and interface regions and larger grain domains when compared with the pristine one. Consequently, the double exchange interaction is suppressed and the metallic-ferromagnetic state below Curie temperature turned into spin-glass insulating state. In contrast, the magnetic and resistivity measurements show that the oxygen treatment increases ferromagnetic phase volume, resulting in greater magnetization (MS) and improved magnetoresistivity properties below Curie temperature by improving the double exchange interaction. The threshold field to observe the training effect is decreased in oxygen treated film. In addition, the positron annihilation spectroscopy analysis exhibits fewer open volume defects in the subsurface region for oxygen treated film when compared with the pristine sample. These results unambiguously demonstrate that the oxygen treated film with significant spin memory and greater magnetoresistance can be a potential candidate for the future memristor applications.

6.
J Phys Condens Matter ; 33(25)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-33878744

RESUMO

The effect ofin situoxygen and vacuum annealings on the low bandwidth manganite Gd1-xCaxMnO3(GCMO) thin film withx= 0.4 was investigated. Based on the magnetic measurements, the AFM-FM coupling is suppressed by the vacuum annealing treatment via destroying the double exchange interaction and increasing the unit cell volume by converting the Mn4+to the Mn3+. Consequently, resistance increases significantly compared to pristine film. The results are explained by a model obtained from the positron annihilation studies, where the vacuum annealing increased the annihilation lifetime in A and B sites due to the formation of vacancy complexesVA,B-VO, which was not the case in the pristine sample. The positron annihilation analysis indicated that most of the open volume defects have been detected in the interface region rather than on the subsurface layer and this result is confirmed by detailed x-ray reflection analysis. On the other hand, the effect of oxygen annealing on the unit cell volume and magnetization was insignificant. This is in agreement with positron annihilation results which demonstrated that the introduction of oxygen does not change the number of cation vacancies significantly. This work demonstrates that the modification of oxygen vacancies and vacancy complexes can tune magnetic and electronic structure of the epitaxial thin films to provide new functionalities in future applications.

7.
J Phys Condens Matter ; 33(3)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33017816

RESUMO

We have systematically studied the structural, electrical transport, and magnetic properties of Gd0.1Ca0.9MnO3thin films in function of thickness, which ranged from 22 nm up to 220 nm. We have found that, although no strong substrate-induced strain was detected for any thickness, a sudden change in the electric transport properties was observed when the film thickness increases above 80 nm. While thinner samples are insulating in the whole temperature range, the samples thicker than 80 nm show a clear insulator-to-metal transition (IMT) at around 100 K. The IMT coincides with the appearance of a ferromagnetic phase that is absent in the thinner samples. We associate this change in behavior with a critical film thickness that induces a sudden change in domain configuration, from in-plane domain to a closed flux-type domain with out-of-plane orientations. These out-of-plane oriented domains are meta-stable ferromagnetic in nature and result in an IMT which is accompanied by a hysteretic magnetoresistance behavior.

8.
J Phys Condens Matter ; 32(17): 175001, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31935690

RESUMO

Current-voltage characteristics of Au/YBa2Cu3O[Formula: see text] interfaces (Au/YBCO), built on optimally-doped YBCO thin films, grown by pulsed laser deposition, were measured as a function of temperature in the 50 K to 270 K range, for two different resistance states. A non-trivial equivalent circuit model is proposed, which reveals the existence of a highly inhomogeneous scenario composed by two complex layers: one presenting both a non-linear Poole-Frenkel conduction as well as variable range hopping localization effects (probably associated with YBa2Cu3O6) mixed with a minor metallic phase, while the other is also composed by a mixture of YBCO with different oxygen contents, where a metallic ohmic phase still percolates. A microscopic description of the effects produced by the resistance switching is given, showing the evolution of carrier traps, localization effects and dielectric behavior for each state. The dielectric behavior is interpreted in terms of a Maxwell-Wagner scenario.

9.
J Phys Condens Matter ; 30(31): 315902, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29957598

RESUMO

A molecular dynamics (MD) simulation to simulate the vortices in superconductors with artificial pinning sites is presented. The simulation reproduces the correct anisotropic behavior in angular dependence of critical current. We also show that the shape of the [Formula: see text] curve depends on the size of the pinning sites and the change from p = 0.5 to [Formula: see text] is due to the breaking of the vortex lattice to individually acting vortices. The results beautifully correspond to experimental data. Furthermore, we found that the size and shape of the c-axis peak observed with columnar pinning sites in [Formula: see text] also depends on the size of the rods, larger pinning sites leading to wider peaks. The results obtained from the MD-simulation are similar to those of the much more computationally intensive Ginzburg-Landau simulations. Furthermore, the MD-simulations can provide insight to the vortex dynamics within the samples.

10.
J Phys Condens Matter ; 29(42): 425802, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28782733

RESUMO

We report the effect of photonic field on the electronic and magnetic structure of a low bandwidth manganite [Formula: see text] [Formula: see text]MnO3 (PCMO) thin film. In particular, the present study confirmed a mechanism that was recently proposed to explain how optical excitation can bias or directly activate the metamagnetic transition associated with the colossal magnetoresistance (CMR) effect of PCMO. The transition is characterized by a shift in the dynamic equilibrium between ferromagnetic (FM) and antiferromagnetic clusters, explaining how it can be suddenly triggered by a sufficient external magnetic field. The film was always found to support some population of FM-clusters, the proportional size of which could be adjusted by the magnetic field and, especially in the vicinity of a thermomagnetic irreversibility, by optical excitation. The double exchange mechanism couples the magnetic degrees of freedom of manganites to their electronic structure, which is further coupled to the ion lattice via the Jahn-Teller mechanism. In accordance, it was found that producing optical phonons into the lattice could lower the free energy of the FM phase enough to significantly bias the CMR effect.

11.
J Phys Condens Matter ; 28(17): 175702, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27046012

RESUMO

We measured the resistivity of pulsed-laser-deposited BaCeO3 (BCO)-doped YBCO thin films containing spherical BCO particles in fields up to 30 T. The average diameter of the particles depends on the dopant concentration being below 4 nm in all the samples. Raised values of the upper critical field, Bc2, were observed in all the samples. Additionally, the parameter γ, describing the electron mass anisotropy, decreased from 6.2 in the undoped sample to 3.1 in the 8 wt.% BCO-doped sample. These results can be explained by the increased number of defects decreasing the mean free path of electrons and thus lowering the coherence length, which in turn increases Bc2.

12.
J Phys Condens Matter ; 28(3): 036001, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26732100

RESUMO

With the goal of elucidating the background of photoinduced ferromagnetism phenomena observed in the perovskite structured (Pr,Ca) manganites, the low-temperature magnetostructure of the material Pr0.9Ca0.1MnO3 was revised using cold neutron powder diffraction, SQUID magnetometry and ab initio calculations. Particular emphasis was placed on determining the presence of nanoscale magnetic phase separation. Previously published results of a canted A-AFM average ground state were reproduced to a good precision both experimentally and theoretically, and complemented by investigating the effects of an applied magnetic field of 2.7 T on the magnetostructure. Explicit evidence of nanoscale magnetic clusters in the material was obtained based on high-resolution neutron diffractograms. Along with several supporting arguments, we present this finding as a justification for extending the nanoscale magnetic phase separation model of manganites to the material under discussion despite its very low Ca doping level in the context of the model. In the light of the new data, we also conclude that the low temperature magnetic moment of Pr must be ca. 300% larger than previously thought in this material, close to the high spin value of 2µB per formula unit.

13.
J Phys Condens Matter ; 27(38): 386001, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26338059

RESUMO

A systematic study of epitaxially grown Sr2FeMoO6 thin films on SrTiO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, SrLaAlO4 and MgO single crystal substrates were made. Transmission electron microscopy investigations showed sharp substrate/films interfaces and increased defect concentration with increased lattice mismatch, indicating defect formation such as dislocations, low angle grain boundaries and stacking faults as a strain relaxation mechanism. Large enough compressive mismatch cause the over-relaxation of the lattice parameters through reorganization or interface defects, which was observed as a tensile strain in films with compressive mismatch larger than -1.05%. All the films with compressive mismatch were phase pure and epitaxially textured while signatures of SrMoO4 parasitic particle was found only in the film grown on MgO. No correlation between the antisite disorder and other structural defects or magnetic properties were found. Instead, the saturation magnetization, Curie temperature, magnetic domain rotation etc are higly dependent on the lattice mismatch induced defects, which outshines the possible correlation with B-site ordering.

14.
J Phys Condens Matter ; 26(26): 266005, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24912904

RESUMO

The complex linear and nonlinear ac susceptibility have been thoroughly investigated in the low bandwidth manganite compound Pr(1-x)Ca(x)MnO3 (PCMO) for the doping range x = 0.0-0.3 with and without a superimposed background dc field. The dynamical ac response shows substantial differences between the samples. The sample with x = 0.1 is found to have two separate magnetic transition peaks, compared to the single transitions in the samples x = 0.0 and x = 0.2. The nonlinear ac susceptibility measurements were compared between samples, which confirmed that these transition peaks are similar in nature and from the same magnetic origin. Additionally, for sample x = 0.3 a complex transition peak structure with overlapping transition peaks was found. This kind of evolution of the magnetic phases as a function of the Ca concentration is believed to rise from coexisting antiferromagnetic (AFM) and ferromagnetic (FM) orderings, where the Ca concentration controls the amount of FM clusters in the sample. The spin glass characteristics of these complex phase-separated magnetic regimes showed similarities and contradictions with conventional spin glasses, which indicates that this cluster glass behavior arises from the frustration between competing AFM and FM clusters having different magnetic exchange interaction.

15.
J Phys Condens Matter ; 25(38): 385702, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23995237

RESUMO

The quantization of magnetic flux in superconductors is usually seen as vortices penetrating the sample. While vortices are unstable in bulk type I superconductors, restricting the superconductor causes a variety of vortex structures to appear. We present a systematic study of giant vortex states in type I superconductors obtained by numerically solving the Ginzburg-Landau equations. The size of the vortices is seen to increase with decreasing film thickness. In type I superconductors, giant vortices appear at intermediate thicknesses but they do not form a well-defined vortex lattice. In the thinnest type I films, singly quantized vortices seem to be stabilized by the geometry of the sample instead of an increase in the effective Ginzburg-Landau parameter.

16.
J Phys Condens Matter ; 25(37): 376003, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23963080

RESUMO

Epitaxial thin films of half-metallic oxide La0.7Sr0.3MnO3 (LSMO) have been grown in two crystalline orientations, one with the c-axis out-of-plane, the (001) orientation, and one with the c-axis in-plane, the (110) orientation. For the (110) oriented growth, there is no polar discontinuity at the substrate-film interface and hence no dead layer formation, which improves ferromagnetic interaction in the LSMO, making it highly attractive for spintronic applications. In our experiments, with x-ray diffraction, x-ray photoelectron spectroscopy and magnetic measurements, we have demonstrated that in the (110) oriented LSMO the lattice is more relaxed, leading to less deformation of electronic density around the La atom or in the MnO6 octahedra. This improved crystal and electronic structure improves the ferromagnetic properties of the films, making the Curie temperature higher by almost 15 K, which is of potential interest for spintronics. However, substrate strain induced magnetic anisotropy causes domain formation with out-of-plane components in these films, which poses some concern for practical spintronic devices.


Assuntos
Eletrônica , Lantânio/química , Magnetismo , Compostos de Manganês/química , Óxidos/química , Estrôncio/química , Anisotropia , Teste de Materiais , Espectroscopia Fotoeletrônica , Difração de Raios X
17.
J Phys Condens Matter ; 25(6): 066005, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23306158

RESUMO

We report on the effect of oxygen on the Jahn-Teller distortion and dynamic magnetic properties of low hole-doped Pr(0.9)Ca(0.1)MnO(3) thin films, using micro-Raman spectroscopy and the temperature dependent ac susceptibility, as a function of the frequency, dc field bias, and thermal cycles. The as-grown and vacuum annealed thin films show a high amount of magnetic frustration and inferior ferromagnetic ordering compared with the oxygen annealed thin films. It has been found that the amount of magnetic frustration in the film is interlinked with the Jahn-Teller distortion and domain wall dynamics. An attempt has been made to understand the origin and nature of the magnetic frustration.


Assuntos
Cálcio/química , Magnetismo , Imãs/química , Compostos de Manganês/química , Modelos Moleculares , Óxidos/química , Oxigênio/química , Praseodímio/química , Análise Espectral Raman , Temperatura
18.
J Phys Condens Matter ; 24(36): 366003, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22893014

RESUMO

Magnetoresistive double perovskite Sr(2)FeMoO(6) thin films were grown with two different deposition pressures on SrTiO(3), MgO and NdGaO(3) substrates by pulsed laser deposition and thorough structural, magnetic and magneto-transport characterization was made. According to x-ray diffraction, all the films were phase pure and fully textured. Indication of substrate dependent strain and low angle grain boundaries was found, especially in films on MgO. Both the deposition pressure and the choice of the substrate have a strong influence on the saturation magnetization, M(s), and Curie temperature, T(C). The structural and magnetic data indicate the presence of anti-site disorder (ASD) in the films. The temperature dependence of resistivity showed semiconductive behaviour at temperatures below 100 K and metallic behaviour at higher temperatures. The semiconductive behaviour was found to increase with increasing ASD. In good quality films, up to 12% negative magnetoresistance (MR) was observed and films grown on MgO and NGO substrates also showed low field MR. However, the most significant observation of this study was that the magnetoresistivity of these Sr(2)FeMoO(6) thin films could not be explained with any traditional MR mechanism, but carried the clear signature of superposition of different mechanisms, in particular low angle grain boundary tunnelling and suppression of antiferromagnetically ordered domains under a magnetic field.

19.
J Phys Condens Matter ; 24(21): 216002, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22543579

RESUMO

The present paper reports detailed structural and magnetic characterization of the low-bandwidth manganite Pr(1-x)Ca(x)MnO(3) (with x = 0.0-0.5) (PCMO) polycrystalline samples. With increasing Ca content, reduction of the unit cell volume and improvement in perovskite structure symmetry was observed at room temperature. Magnetic characterization shows the signature of coexisting AFM-FM ordering and spin-glass phase at the low doping range (x = 0.0-0.2) while increased hole doping (x = 0.3-0.5) leads to charge ordering, training effect and an irreversible metamagnetic phenomenon. The large irreversible metamagnetism in the CO phase of PCMO and the corresponding spin memory effect is a direct consequence of hysteretic first-order phase transition arising from the weakening of the CO state under the external magnetic field and trapping of the spins due to a strong pinning potential in the material.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Compostos de Manganês/química , Campos Magnéticos , Teste de Materiais , Transição de Fase
20.
J Phys Condens Matter ; 24(20): 206002, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22510525

RESUMO

The effects of ex situ vacuum and oxygen annealing treatments on thin films of the low-bandwidth compound Pr(1-x)Ca(x)MnO(3) (PCMO) are investigated. Structural and magnetic measurements reveal that increased ferromagnetism can be achieved by oxygen annealing treatment, which is linked to the increased Mn(4+) ion content, as observed from x-ray photoelectron spectroscopy (XPS) measurements, as well as relaxation of the substrate-induced tensile strain of the PCMO unit cell. The increased number of Mn(4+) ions and partial release of strain lead to stronger double-exchange interaction in the system. Vacuum annealing increases the ferromagnetic (FM) interaction as well; however, the increased FM ordering is not directly related to the improved double-exchange interaction, as XPS measurement reveals an indication of a slight increase in Mn(3+) ions in this case. Trapping of carriers in the oxygen vacancies and formation of magnetic polarons have been suggested as the causes of the increase in ferromagnetic ordering, and this is also supported by the large coercivity and longer spin memory in the vacuum annealed PCMO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...