Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 37(2): 297-308, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24136589

RESUMO

BACKGROUND: UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) is a bifunctional enzyme responsible for the first committed steps in the synthesis of sialic acid, a common terminal monosaccharide in both protein and lipid glycosylation. GNE mutations are responsible for a rare autosomal recessive neuromuscular disorder, GNE myopathy (also called hereditary inclusion body myopathy). The connection between the impairment of sialic acid synthesis and muscle pathology in GNE myopathy remains poorly understood. METHODS: Glycosphingolipid (GSL) analysis was performed by HPLC in multiple models of GNE myopathy, including patients' fibroblasts and plasma, control fibroblasts with inhibited GNE epimerase activity through a novel imino sugar, and tissues of Gne(M712T/M712T) knock-in mice. RESULTS: Not only neutral GSLs, but also sialylated GSLs, were significantly increased compared to controls in all tested models of GNE myopathy. Treatment of GNE myopathy fibroblasts with N-acetylmannosamine (ManNAc), a sialic acid precursor downstream of GNE epimerase activity, ameliorated the increased total GSL concentrations. CONCLUSION: GNE myopathy models have increased total GSL concentrations. ManNAc supplementation results in decrease of GSL levels, linking abnormal increase of total GSLs in GNE myopathy to defects in the sialic acid biosynthetic pathway. These data advocate for further exploring GSL concentrations as an informative biomarker, not only for GNE myopathy, but also for other disorders of sialic acid metabolism.


Assuntos
Glicoesfingolipídeos/metabolismo , Complexos Multienzimáticos/metabolismo , Doenças Musculares/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Glicoesfingolipídeos/sangue , Glicoesfingolipídeos/genética , Hexosaminas/sangue , Hexosaminas/genética , Hexosaminas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/sangue , Complexos Multienzimáticos/genética , Músculos/metabolismo , Doenças Musculares/sangue , Doenças Musculares/genética , Mutação , Ácido N-Acetilneuramínico/sangue , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/metabolismo
2.
Hum Genet ; 124(3): 235-42, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18726118

RESUMO

Human chromosome 15q11-13 and the syntenic region of mouse chromosome 7 contain multiple imprinted genes necessary for proper neurodevelopment. Due to imprinting, paternal 15q11-13 deficiencies lead to Prader-Willi syndrome (PWS) while maternal 15q11-13 deficiencies cause Angelman syndrome (AS). The mechanisms involved in parental imprinting of this locus are conserved between human and mouse, yet inconsistencies exist in reports of imprinting of the maternally expressed gene Atp10a/ATP10A. Excess maternal 15q11-13 dosage often leads to autism-spectrum disorder therefore further investigation to characterize the true imprinting status of ATP10A in humans was warranted. In this study, we examined allelic expression of ATP10A transcript in 16 control brain samples, and found that 10/16 exhibited biallelic expression while only 6/16 showed monoallelic expression. Contrary to the expectation for a maternally expressed imprinted gene, quantitative RT-PCR revealed significantly reduced ATP10A transcript in Prader-Willi syndrome brains with two maternal chromosomes due to uniparental disomy (PWS UPD). Furthermore, a PWS UPD brain sample with monoallelic ATP10A expression demonstrated that monoallelic expression can be independent of imprinting. Investigation of factors that may influence allelic ATP10A expression status revealed that gender has a major affect, as females were significantly more likely to have monoallelic ATP10A expression than males. Regulatory sequences were also examined, and a promoter polymorphism that disrupts binding of the transcription factor Sp1 also potentially contributes to allelic expression differences in females. Our results show that monoallelic expression of human ATP10A is variable in the population and is influenced by both gender and common genetic variation.


Assuntos
Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/genética , Encéfalo/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Cromossomos Humanos Par 15/genética , Feminino , Impressão Genômica , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Síndrome de Prader-Willi/genética , Fatores Sexuais
3.
Autism Res ; 1(3): 169-78, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19132145

RESUMO

Epigenetic mechanisms have been proposed to play a role in the etiology of autism. This hypothesis is supported by the discovery of increased MECP2 promoter methylation associated with decreased MeCP2 protein expression in autism male brain. To further understand the influence of female X chromosome inactivation (XCI) and neighboring methylation patterns on aberrant MECP2 promoter methylation in autism, multiple methylation analyses were peformed on brain and blood samples from individuals with autism. Bisulfite sequencing analyses of a region 0.6 kb upstream of MECP2 in brain DNA samples revealed an abrupt transition from a highly methylated region in both sexes to a region unmethylated in males and subject to XCI in females. Chromatin immunoprecipitation analysis demonstrated that the CCTC-binding factor (CTCF) bound to this transition region in neuronal cells, consistent with a chromatin boundary at the methylation transition. Male autism brain DNA samples displayed a slight increase in methylation in this transition region, suggesting a possible aberrant spreading of methylation into the MECP2 promoter in autism males across this boundary element. In addition, autistic female brain DNA samples showed evidence for aberrant MECP2 promoter methylation as an increase in the number of bisulfite sequenced clones with undefined XCI status for MECP2 but not androgen receptor (AR). To further investigate the specificity of MECP2 methylation alterations in autism, blood DNA samples from females and mothers of males with autism were also examined for XCI skewing at AR, but no significant increase in XCI skewing was observed compared to controls. These results suggest that the aberrant MECP2 methylation in autism brain DNA samples is due to locus-specific rather than global X chromosome methylation changes.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Encéfalo/patologia , Cromossomos Humanos X/genética , Proteína 2 de Ligação a Metil-CpG/genética , Metilação , Inativação do Cromossomo X/genética , Pré-Escolar , Primers do DNA/genética , Humanos , Polimorfismo Genético/genética
4.
Hum Mol Genet ; 16(6): 691-703, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17339270

RESUMO

Human chromosome 15q11-13 is a complex locus containing imprinted genes as well as a cluster of three GABA(A) receptor subunit (GABR) genes-GABRB3, GABRA5 and GABRG3. Deletion or duplication of 15q11-13 GABR genes occurs in multiple human neurodevelopmental disorders including Prader-Willi syndrome (PWS), Angelman syndrome (AS) and autism. GABRB3 protein expression is also reduced in Rett syndrome (RTT), caused by mutations in MECP2 on Xq28. Although Gabrb3 is biallelically expressed in mouse brain, conflicting data exist regarding the imprinting status of the 15q11-13 GABR genes in humans. Using coding single nucleotide polymorphisms we show that all three GABR genes are biallelically expressed in 21 control brain samples, demonstrating that these genes are not imprinted in normal human cortex. Interestingly, four of eight autism and one of five RTT brain samples showed monoallelic or highly skewed allelic expression of one or more GABR gene, suggesting that epigenetic dysregulation of these genes is common to both disorders. Quantitative real-time RT-PCR analysis of PWS and AS samples with paternal and maternal 15q11-13 deletions revealed a paternal expression bias of GABRB3, while RTT brain samples showed a significant reduction in GABRB3 and UBE3A. Chromatin immunoprecipitation and bisulfite sequencing in SH-SY5Y neuroblastoma cells demonstrated that MeCP2 binds to methylated CpG sites within GABRB3. Our previous studies demonstrated that homologous 15q11-13 pairing in neurons was dependent on MeCP2 and was disrupted in RTT and autism cortex. Combined, these results suggest that MeCP2 acts as a chromatin organizer for optimal expression of both alleles of GABRB3 in neurons.


Assuntos
Córtex Cerebral/metabolismo , Transtornos Globais do Desenvolvimento Infantil/genética , Cromossomos Humanos Par 15 , Epigênese Genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Receptores de GABA-A/genética , Alelos , Animais , Linhagem Celular Tumoral , Criança , Deleção Cromossômica , Ilhas de CpG , Metilação de DNA , Pai , Impressão Genômica , Humanos , Íntrons , Camundongos , Reação em Cadeia da Polimerase , Síndrome de Prader-Willi/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...