Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398132

RESUMO

Tumors with a pathogenic BRCA1/2 mutation are homologous recombination (HR)-deficient (HRD) and consequently sensitive to platinum-based chemotherapy and Poly-[ADP-Ribose]-Polymerase inhibitors (PARPi). We hypothesized that functional HR status better reflects real-time HR status than BRCA1/2 mutation status. Therefore, we determined the functional HR status of 53 breast cancer (BC) and 38 ovarian cancer (OC) cell lines by measuring the formation of RAD51 foci after irradiation. Discrepancies between functional HR and BRCA1/2 mutation status were investigated using exome sequencing, methylation and gene expression data from 50 HR-related genes. A pathogenic BRCA1/2 mutation was found in 10/53 (18.9%) of BC and 7/38 (18.4%) of OC cell lines. Among BRCA1/2-mutant cell lines, 14/17 (82.4%) were HR-proficient (HRP), while 1/74 (1.4%) wild-type cell lines was HRD. For most (80%) cell lines, we explained the discrepancy between functional HR and BRCA1/2 mutation status. Importantly, 12/14 (85.7%) BRCA1/2-mutant HRP cell lines were explained by mechanisms directly acting on BRCA1/2. Finally, functional HR status was strongly associated with COSMIC single base substitution signature 3, but not BRCA1/2 mutation status. Thus, the majority of BRCA1/2-mutant cell lines do not represent a suitable model for HRD. Moreover, exclusively determining BRCA1/2 mutation status may not suffice for platinum-based chemotherapy or PARPi patient selection.

2.
Pflugers Arch ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294517

RESUMO

Clathrin-associated trafficking is a major mechanism for intracellular communication, as well as for cells to communicate with the extracellular environment. A decreased oxygen availability termed hypoxia has been described to influence this mechanism in the past. Mostly biochemical studies were applied in these analyses, which miss spatiotemporal information. We have applied live cell microscopy and a newly developed analysis script in combination with a GFP-tagged clathrin-expressing cell line to obtain insight into the dynamics of the effect of hypoxia. Number, mobility and directionality of clathrin-coated vesicles were analysed in non-stimulated cells as well as after stimulation with epidermal growth factor (EGF) or transferrin in normoxic and hypoxic conditions. These data reveal cargo-specific effects, which would not be observable with biochemical methods or with fixed cells and add to the understanding of cell physiology in hypoxia. The stimulus-dependent consequences were also reflected in the final cellular output, i.e. decreased EGF signaling and in contrast increased iron uptake in hypoxia.

3.
DNA Repair (Amst) ; 131: 103570, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734176

RESUMO

Live-cell and high-resolution fluorescence microscopy are powerful tools to study the organization and dynamics of DNA double-strand break repair foci and specific repair proteins in single cells. This requires specific induction of DNA double-strand breaks and fluorescent markers to follow the DNA lesions in living cells. In this review, where we focused on mammalian cell studies, we discuss different methods to induce DNA double-strand breaks, how to visualize and quantify repair foci in living cells., We describe different (live-cell) imaging modalities that can reveal details of the DNA double-strand break repair process across multiple time and spatial scales. In addition, recent developments are discussed in super-resolution imaging and single-molecule tracking, and how these technologies can be applied to elucidate details on structural compositions or dynamics of DNA double-strand break repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Animais , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula , DNA , Mamíferos/genética
4.
Bio Protoc ; 13(14): e4780, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37497444

RESUMO

During the first meiotic prophase in mouse, repair of SPO11-induced DNA double-strand breaks (DSBs), facilitating homologous chromosome synapsis, is essential to successfully complete the first meiotic cell division. Recombinases RAD51 and DMC1 play an important role in homology search, but their mechanistic contribution to this process is not fully understood. Super-resolution, single-molecule imaging of RAD51 and DMC1 provides detailed information on recombinase accumulation on DSBs during meiotic prophase. Here, we present a detailed protocol of recombination foci analysis of three-color direct stochastic optical reconstruction microscopy (dSTORM) imaging of SYCP3, RAD51, and DMC1, fluorescently labeled by antibody staining in mouse spermatocytes. This protocol consists of sample preparation, data acquisition, pre-processing, and data analysis. The sample preparation procedure includes an updated version of the nuclear spreading of mouse testicular cells, followed by immunocytochemistry and the preparation steps for dSTORM imaging. Data acquisition consists of three-color dSTORM imaging, which is extensively described. The pre-processing that converts fluorescent signals to localization data also includes channel alignment and image reconstruction, after which regions of interest (ROIs) are identified based on RAD51 and/or DMC1 localization patterns. The data analysis steps then require processing of the fluorescent signal localization within these ROIs into discrete nanofoci, which can be further analyzed. This multistep approach enables the systematic investigation of spatial distributions of proteins associated with individual DSB sites and can be easily adapted for analyses of other foci-forming proteins. All computational scripts and software are freely accessible, making them available to a broad audience. Key features Preparation of spread nuclei, resulting in a flattened preparation with easy antibody-accessible chromatin-associated proteins on dSTORM-compatible coverslips. dSTORM analysis of immunofluorescent repair foci in meiotic prophase nuclei. Detailed descriptions of data acquisition, (pre-)processing, and nanofoci feature analysis applicable to all proteins that assemble in immunodetection as discrete foci. Graphical overview.

5.
Elife ; 102021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34254584

RESUMO

Breast cancer type two susceptibility protein (BRCA2) is an essential protein in genome maintenance, homologous recombination (HR), and replication fork protection. Its function includes multiple interaction partners and requires timely localization to relevant sites in the nucleus. We investigated the importance of the highly conserved DNA-binding domain (DBD) and C-terminal domain (CTD) of BRCA2. We generated BRCA2 variants missing one or both domains in mouse embryonic stem (ES) cells and defined their contribution in HR function and dynamic localization in the nucleus, by single-particle tracking of BRCA2 mobility. Changes in molecular architecture of BRCA2 induced by binding partners of purified BRCA2 were determined by scanning force microscopy. BRCA2 mobility and DNA-damage-induced increase in the immobile fraction were largely unaffected by C-terminal deletions. The purified proteins missing CTD and/or DBD were defective in architectural changes correlating with reduced HR function in cells. These results emphasize BRCA2 activity at sites of damage beyond promoting RAD51 delivery.


Assuntos
Proteína BRCA2/química , Proteína BRCA2/genética , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Conformação de Ácido Nucleico , Animais , Proteína BRCA2/metabolismo , DNA/química , DNA/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Humanos , Camundongos , Células-Tronco Embrionárias Murinas , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Imagem Individual de Molécula
6.
Nat Commun ; 12(1): 4605, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326328

RESUMO

BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.


Assuntos
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espermatogênese/fisiologia , Animais , Proteína BRCA2/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cristalografia por Raios X/métodos , Feminino , Recombinação Homóloga , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Meiose , Camundongos , Modelos Animais , Domínios e Motivos de Interação entre Proteínas , Deleção de Sequência
7.
J Neurosci ; 41(26): 5579-5594, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34021041

RESUMO

Protein phosphatase 2B (PP2B) is critical for synaptic plasticity and learning, but the molecular mechanisms involved remain unclear. Here we identified different types of proteins that interact with PP2B, including various structural proteins of the postsynaptic densities (PSDs) of Purkinje cells (PCs) in mice. Deleting PP2B reduced expression of PSD proteins and the relative thickness of PSD at the parallel fiber to PC synapses, whereas reexpression of inactive PP2B partly restored the impaired distribution of nanoclusters of PSD proteins, together indicating a structural role of PP2B. In contrast, lateral mobility of surface glutamate receptors solely depended on PP2B phosphatase activity. Finally, the level of motor learning covaried with both the enzymatic and nonenzymatic functions of PP2B. Thus, PP2B controls synaptic function and learning both through its action as a phosphatase and as a structural protein that facilitates synapse integrity.SIGNIFICANCE STATEMENT Phosphatases are generally considered to serve their critical role in learning and memory through their enzymatic operations. Here, we show that protein phosphatase 2B (PP2B) interacts with structural proteins at the synapses of cerebellar Purkinje cells. Differentially manipulating the enzymatic and structural domains of PP2B leads to different phenotypes in cerebellar learning. We propose that PP2B is crucial for cerebellar learning via two complementary actions, an enzymatic and a structural operation.


Assuntos
Calcineurina/metabolismo , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Células de Purkinje/fisiologia , Animais , Movimentos Oculares/fisiologia , Camundongos , Densidade Pós-Sináptica/metabolismo
8.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917044

RESUMO

High-linear-energy-transfer (LET) radiation is more lethal than similar doses of low-LET radiation types, probably a result of the condensed energy deposition pattern of high-LET radiation. Here, we compare high-LET α-particle to low-LET X-ray irradiation and monitor double-strand break (DSB) processing. Live-cell microscopy was used to monitor DNA double-strand breaks (DSBs), marked by p53-binding protein 1 (53BP1). In addition, the accumulation of the endogenous 53BP1 and replication protein A (RPA) DSB processing proteins was analyzed by immunofluorescence. In contrast to α-particle-induced 53BP1 foci, X-ray-induced foci were resolved quickly and more dynamically as they showed an increase in 53BP1 protein accumulation and size. In addition, the number of individual 53BP1 and RPA foci was higher after X-ray irradiation, while focus intensity was higher after α-particle irradiation. Interestingly, 53BP1 foci induced by α-particles contained multiple RPA foci, suggesting multiple individual resection events, which was not observed after X-ray irradiation. We conclude that high-LET α-particles cause closely interspaced DSBs leading to high local concentrations of repair proteins. Our results point toward a change in DNA damage processing toward DNA end-resection and homologous recombination, possibly due to the depletion of soluble protein in the nucleoplasm. The combination of closely interspaced DSBs and perturbed DNA damage processing could be an explanation for the increased relative biological effectiveness (RBE) of high-LET α-particles compared to X-ray irradiation.


Assuntos
Partículas alfa , Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos da radiação , Raios X , Linhagem Celular Tumoral , Humanos
9.
PLoS Genet ; 16(6): e1008595, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502153

RESUMO

The recombinase RAD51, and its meiosis-specific paralog DMC1 localize at DNA double-strand break (DSB) sites in meiotic prophase. While both proteins are required during meiotic prophase, their spatial organization during meiotic DSB repair is not fully understood. Using super-resolution microscopy on mouse spermatocyte nuclei, we aimed to define their relative position at DSB foci, and how these vary in time. We show that a large fraction of meiotic DSB repair foci (38%) consisted of a single RAD51 nanofocus and a single DMC1 nanofocus (D1R1 configuration) that were partially overlapping with each other (average center-center distance around 70 nm). The vast majority of the rest of the foci had a similar large RAD51 and DMC1 nanofocus, but in combination with additional smaller nanofoci (D2R1, D1R2, D2R2, or DxRy configuration) at an average distance of around 250 nm. As prophase progressed, less D1R1 and more D2R1 foci were observed, where the large RAD51 nanofocus in the D2R1 foci elongated and gradually oriented towards the distant small DMC1 nanofocus. D1R2 foci frequency was relatively constant, and the single DMC1 nanofocus did not elongate, but was frequently observed between the two RAD51 nanofoci in early stages. D2R2 foci were rare (<10%) and nearest neighbour analyses also did not reveal cofoci formation between D1R1 foci. However, overall, foci localized nonrandomly along the SC, and the frequency of the distance distributions peaked at 800 nm, indicating interference and/or a preferred distance between two ends of a DSB. DMC1 nanofoci where somewhat further away from the axial or lateral elements of the synaptonemal complex (SC, connecting the chromosomal axes of homologs) compared to RAD51 nanofoci. In the absence of the transverse filament of the SC, early configurations were more prominent, and RAD51 nanofocus elongation occurred only transiently. This in-depth analysis of single cell landscapes of RAD51 and DMC1 accumulation patterns at DSB repair sites at super-resolution revealed the variability of foci composition, and defined functional consensus configurations that change over time.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Prófase , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Animais , Quebras de DNA de Cadeia Dupla , Masculino , Camundongos , Espermatócitos/citologia , Espermatócitos/metabolismo
10.
Sci Rep ; 9(1): 17160, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748591

RESUMO

Quantitative analysis of dynamic processes in living cells using time-lapse microscopy requires not only accurate tracking of every particle in the images, but also reliable extraction of biologically relevant parameters from the resulting trajectories. Whereas many methods exist to perform the tracking task, there is still a lack of robust solutions for subsequent parameter extraction and analysis. Here a novel method is presented to address this need. It uses for the first time a deep learning approach to segment single particle trajectories into consistent tracklets (trajectory segments that exhibit one type of motion) and then performs moment scaling spectrum analysis of the tracklets to estimate the number of mobility classes and their associated parameters, providing rich fundamental knowledge about the behavior of the particles under study. Experiments on in-house datasets as well as publicly available particle tracking data for a wide range of proteins with different dynamic behavior demonstrate the broad applicability of the method.

11.
BMC Bioinformatics ; 20(1): 30, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646838

RESUMO

BACKGROUND: Single-molecule localization microscopy is a super-resolution microscopy technique that allows for nanoscale determination of the localization and organization of proteins in biological samples. For biological interpretation of the data it is essential to extract quantitative information from the super-resolution data sets. Due to the complexity and size of these data sets flexible and user-friendly software is required. RESULTS: We developed SMoLR (Single Molecule Localization in R): a flexible framework that enables exploration and analysis of single-molecule localization data within the R programming environment. SMoLR is a package aimed at extracting, visualizing and analyzing quantitative information from localization data obtained by single-molecule microscopy. SMoLR is a platform not only to visualize nanoscale subcellular structures but additionally provides means to obtain statistical information about the distribution and localization of molecules within them. This can be done for individual images or SMoLR can be used to analyze a large set of super-resolution images at once. Additionally, we describe a method using SMoLR for image feature-based particle averaging, resulting in identification of common features among nanoscale structures. CONCLUSIONS: Embedded in the extensive R programming environment, SMoLR allows scientists to study the nanoscale organization of biomolecules in cells by extracting and visualizing quantitative information and hence provides insight in a wide-variety of different biological processes at the single-molecule level.


Assuntos
Gráficos por Computador , Enzimas Reparadoras do DNA/metabolismo , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos , Software , Algoritmos , Interpretação Estatística de Dados , Humanos
12.
Methods Enzymol ; 600: 375-406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29458767

RESUMO

Direct observation of individual protein molecules in their native environment, at nanometer resolution, in a living cell, in motion is not only fascinating but also uniquely informative. Several recent major technological advances in genomic engineering, protein and synthetic fluorophore development, and light microscopy have dramatically increased the accessibility of this approach. This chapter describes the procedures for modifying endogenous genomic loci to producing fluorescently tagged proteins, their high-resolution visualization, and analysis of their dynamics in mammalian cells, using DNA repair proteins BRCA2 and RAD51 as an example.


Assuntos
Proteína BRCA2/análise , Técnicas de Cultura de Células/métodos , Microscopia Intravital/métodos , Rad51 Recombinase/análise , Reparo de DNA por Recombinação , Imagem Individual de Molécula/métodos , Animais , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Recuperação de Fluorescência Após Fotodegradação/instrumentação , Recuperação de Fluorescência Após Fotodegradação/métodos , Edição de Genes/métodos , Proteínas de Fluorescência Verde/química , Microscopia Intravital/instrumentação , Substâncias Luminescentes/química , Camundongos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Células-Tronco Embrionárias Murinas , Ligação Proteica , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Imagem Individual de Molécula/instrumentação
13.
Nucleic Acids Res ; 45(8): 4507-4518, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28168276

RESUMO

The tumor suppressor BRCA2 is a large multifunctional protein mutated in 50-60% of familial breast cancers. BRCA2 interacts with many partners and includes multiple regions with potentially disordered structure. In homology directed DNA repair BRCA2 delivers RAD51 to DNA resulting in removal of RPA and assembly of a RAD51 nucleoprotein filament. Dynamic rearrangements of BRCA2 likely drive this molecular hand-off initiating DNA strand exchange. We show human BRCA2 forms oligomers which can have an extended shape. Scanning force microscopy and quantitative single molecule fluorescence define the variety of BRCA2 complexes, reveal dramatic rearrangements upon RAD51 binding and the loading of RAD51 patches on single strand DNA. At sites of repair in cell nuclei, super-resolution microscopy shows BRCA2 and RAD51 arranged in largely separate locations. We identified dynamic structural transitions in BRCA2 complexes suggested to facilitate loading of RAD51 onto RPA coated single strand DNA and subsequent release of BRCA2.


Assuntos
Proteína BRCA2/genética , Núcleo Celular/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Reparo de DNA por Recombinação , Proteína de Replicação A/genética , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Sítios de Ligação , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Quebras de DNA de Cadeia Simples , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Microscopia de Força Atômica , Ligação Proteica , Multimerização Proteica , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Imagem Individual de Molécula
14.
Biol Open ; 5(9): 1266-74, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27464669

RESUMO

Nuclear foci of chromatin binding factors are, in many cases, discussed as sites of long-range chromatin interaction in the three-dimensional nuclear space. Insulator binding proteins have been shown to aggregate into insulator bodies, which are large structures not involved in insulation; however, the more diffusely distributed insulator speckles have not been analysed in this respect. Furthermore, insulator binding proteins have been shown to drive binding sites for Polycomb group proteins into Polycomb bodies. Here we find that insulator speckles, marked by the insulator binding protein dCTCF, and Polycomb bodies show differential association with the insulator protein CP190. They differ in number and three-dimensional location with only 26% of the Polycomb bodies overlapping with CP190. By using fluorescence in situ hybridization (FISH) probes to identify long-range interaction (kissing) of the Hox gene clusters Antennapedia complex (ANT-C) and Bithorax complex (BX-C), we found the frequency of interaction to be very low. However, these rare kissing events were associated with insulator speckles at a significantly shorter distance and an increased speckle number. This suggests that insulator speckles are associated with long-distance interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...