Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Adv Biol (Weinh) ; 7(10): e2300036, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37017501

RESUMO

Epithelial-to-mesenchymal transition (EMT) is responsible for driving metastasis of multiple cancer types including lung cancer. Peroxisome proliferator-activated receptor (PPAR)-γ, a ligand-activated transcription factor, controls expression of variety of genes involved in EMT. Although several synthetic compounds act as potent full agonists for PPAR-γ, their long term application is restricted due to serious adverse effects. Therefore, partial agonists involving reduced and balanced PPAR-γ activity are more effective and valued. A previous study discerned the efficacy of quercetin and its derivatives to attain favorable stabilization with PPAR-γ. Here this work is extended by synthesizing five novel quercetin derivatives (QDs) namely thiosemicarbazone (QUETSC)) and hydrazones (quercetin isonicotinic acid hydrazone (QUEINH), quercetin nicotinic acid hydrazone (QUENH), quercetin 2-furoic hydrazone (QUE2FH), and quercetin salicyl hydrazone (QUESH)) and their effects are analyzed in modulating EMT in lung cancer cell lines via PPAR-γ partial activation. QDs-treated A549 cells diminish cell proliferation strongly at nanomolar concentration compared to NCI-H460 cells. Of the five screened derivatives, QUETSC, QUE2FH, and QUESH exhibit the property of partial activation as compared to the overexpressive level of rosiglitazone. Consistently, these QDs also suppress EMT process by markedly downregulating the levels of mesenchymal markers (Snail, Slug, and zinc finger E-box binding homeobox 1) and concomitant upregulation of epithelial marker (E-cadherin).

4.
Mol Immunol ; 156: 111-126, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36921486

RESUMO

COVID-19 is a severe respiratory illness that has emerged as a devasting health problem worldwide. The disease outcome is heterogeneous, which is most likely dependent on the immunity of an individual. Asymptomatic and mildly/moderate symptomatic (non-severe) patients likely develop an effective early immune response and clear the virus. However, severe symptoms dominate due to a failure in the generation of an effective and specific early immune response against SARS-CoV-2. Moreover, a late surge in pathogenic inflammation involves dysregulated innate and adaptive immune responses leading to local and systemic tissue damage and the emergence of severe disease symptoms. In this review, we describe the potential mechanisms of protective and pathogenic immune responses in "mild/moderate" and "severe" symptomatic SARS-CoV-2 infected people, respectively, and discuss the immune components that are currently targeted for therapeutic intervention.


Assuntos
COVID-19 , SARS-CoV-2 , SARS-CoV-2/imunologia , COVID-19/genética , COVID-19/imunologia , Humanos , Imunidade Inata , Imunidade Adaptativa , Predisposição Genética para Doença , Células de Memória Imunológica , Tratamento Farmacológico da COVID-19 , Vacina BCG/imunologia
6.
Mol Cancer ; 22(1): 40, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810079

RESUMO

Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imunoterapia , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Recidiva Local de Neoplasia , Carcinoma de Pequenas Células do Pulmão/terapia
7.
Tissue Cell ; 79: 101908, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36084409

RESUMO

Current tissue engineering strategies in bone repair and regeneration have limitations regarding tissue rejection, insufficient blood supply, and tissue integration. Specific host response results in isolation, degeneration, and subsequent loss of function of the implanted/scaffold biomaterial. Therefore, strategies to increase the interplay between angiogenesis and complex bone tissue formation are required to develop fully functional vascularized bone tissue. Angiogenesis is essential for oxygen/nutrient supply, waste removal, endothelial/stem cell homing, and the release of mitogenic/angiogenic/osteogenic factors. Hence, the challenge lies in understanding the complex interdependence of angiogenesis with neo-bone formation. Therefore, recent bone tissue regeneration strategies have focused on biomaterial development concerning induction of neovascularization and subsequent angiogenesis. Scaffold architecture (macro/micro/nano) scales, culture conditions (3-Dimension, hypoxia, etc), stimuli-dependent delivery of angiofactors, and gene delivery may significantly modulate vascularization in tissue-engineered products. Therefore, the current review discusses the key mechanisms/steps involved in defining the relationship between angiogenic and osteogenic factors. The recent strategies incorporating the above understanding in the development of bone tissue-engineered constructs are also deliberated. Eventually, these strategies may give the potential way forward to develop a bioengineered, vascularized bone tissue construct for implant applications.


Assuntos
Neovascularização Fisiológica , Alicerces Teciduais , Humanos , Neovascularização Fisiológica/fisiologia , Regeneração Óssea/fisiologia , Osso e Ossos , Engenharia Tecidual/métodos , Osteogênese , Materiais Biocompatíveis , Neovascularização Patológica
8.
Naunyn Schmiedebergs Arch Pharmacol ; 395(10): 1139-1158, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35695911

RESUMO

Cancer is a complex disease affecting millions of people around the world. Despite advances in surgical and radiation therapy, chemotherapy continues to be an important therapeutic option for the treatment of cancer. The current treatment is expensive and has several side effects. Also, over time, cancer cells develop resistance to chemotherapy, due to which there is a demand for new drugs. Drug repurposing is a novel approach that focuses on finding new applications for the old clinically approved drugs. Current advances in the high-dimensional multiomics landscape, especially proteomics, genomics, and computational omics-data analysis, have facilitated drug repurposing. The drug repurposing approach provides cheaper, effective, and safe drugs with fewer side effects and fastens the process of drug development. The review further delineates each repurposed drug's original indication and mechanism of action in cancer. Along with this, the article also provides insight upon artificial intelligence and its application in drug repurposing. Clinical trials are vital for determining medication safety and effectiveness, and hence the clinical studies for each repurposed medicine in cancer, including their stages, status, and National Clinical Trial (NCT) identification, are reported in this review article. Various emerging evidences imply that repurposing drugs is critical for the faster and more affordable discovery of anti-cancerous drugs, and the advent of artificial intelligence-based computational tools can accelerate the translational cancer-targeting pipeline.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inteligência Artificial , Reposicionamento de Medicamentos/métodos , Humanos , Neoplasias/tratamento farmacológico
9.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166431, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533903

RESUMO

Metastasis consists of hallmark events, including Epithelial-Mesenchymal Transition (EMT), angiogenesis, initiation of inflammatory tumor microenvironment, and malfunctions in apoptosis. Autophagy is known to play a pivotal role in the metastatic process. Autophagy has pulled researchers towards it in recent times because of its dual role in the maintenance of cancer cells. Evidence states that cells undergoing EMT need autophagy in order to survive during migration and dissemination. Additionally, it orchestrates EMT markers in certain cancers. On the other side of the coin, autophagy plays an oncosuppressive role in impeding early metastasis. This review aims to project the interrelationship between autophagy and EMT. Targeting EMT via autophagy as a useful strategy is discussed in this review. Furthermore, for the first time, we have covered the possible reciprocating roles of EMT and autophagy and its consequences in cancer metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Apoptose , Autofagia , Humanos , Neoplasias/patologia , Microambiente Tumoral
10.
Commun Biol ; 5(1): 407, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501466

RESUMO

Epithelial-mesenchymal Transition (EMT) is a multi-step process that involves cytoskeletal rearrangement. Here, developing and using an image quantification tool, Statistical Parametrization of Cell Cytoskeleton (SPOCC), we have identified an intermediate EMT state with a specific cytoskeletal signature. We have been able to partition EMT into two steps: (1) initial formation of transverse arcs and dorsal stress fibers and (2) their subsequent conversion to ventral stress fibers with a concurrent alignment of fibers. Using the Orientational Order Parameter (OOP) as a figure of merit, we have been able to track EMT progression in live cells as well as characterize and quantify their cytoskeletal response to drugs. SPOCC has improved throughput and is non-destructive, making it a viable candidate for studying a broad range of biological processes. Further, owing to the increased stiffness (and by inference invasiveness) of the intermediate EMT phenotype compared to mesenchymal cells, our work can be instrumental in aiding the search for future treatment strategies that combat metastasis by specifically targeting the fiber alignment process.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Citoesqueleto , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias Pulmonares/genética , Microtúbulos , Fenótipo
11.
Acta Pharmacol Sin ; 43(11): 2759-2776, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35379933

RESUMO

Three major approaches of cancer therapy can be enunciated as delivery of biotherapeutics, tumor image analysis, and immunotherapy. Liposomes, artificial fat bubbles, are long known for their capacity to encapsulate a diverse range of bioactive molecules and release the payload in a sustained, stimuli-responsive manner. They have already been widely explored as a delivery vehicle for therapeutic drugs as well as imaging agents. They are also extensively being used in cancer immunotherapy. On the other hand, exosomes are naturally occurring nanosized extracellular vesicles that serve an important role in cell-cell communication. Importantly, the exosomes also have proven their capability to carry an array of active pharmaceuticals and diagnostic molecules to the tumor cells. Exosomes, being enriched with tumor antigens, have numerous immunomodulatory effects. Much to our intrigue, in recent times, efforts have been directed toward developing smart, bioengineered, exosome-liposome hybrid nanovesicles, which are augmented by the benefits of both vesicular systems. This review attempts to summarize the contemporary developments in the use of exosome and liposome toward cancer diagnosis, therapy, as a vehicle for drug delivery, diagnostic carrier for tumor imaging, and cancer immunotherapy. We shall also briefly reflect upon the recent advancements of the exosome-liposome hybrids in cancer therapy. Finally, we put forward future directions for the use of exosome/liposome and/or hybrid nanocarriers for accurate diagnosis and personalized therapies for cancers.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Lipossomos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos
12.
Drug Discov Today ; 27(1): 82-101, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252612

RESUMO

WNT/ß-catenin signaling orchestrates various physiological processes, including embryonic development, growth, tissue homeostasis, and regeneration. Abnormal WNT/ß-catenin signaling is associated with various cancers and its inhibition has shown effective antitumor responses. In this review, we discuss the pathway, potential targets for the development of WNT/ß-catenin inhibitors, available inhibitors, and their specific molecular interactions with the target proteins. We also discuss inhibitors that are in clinical trials and describe potential new avenues for therapeutically targeting the WNT/ß-catenin pathway. Furthermore, we introduce emerging strategies, including artificial intelligence (AI)-assisted tools and technology-based actionable approaches, to translate WNT/ß-catenin inhibitors to the clinic for cancer therapy.


Assuntos
Produtos Biológicos/farmacologia , Terapia de Alvo Molecular , Neoplasias , Via de Sinalização Wnt , Desenho de Fármacos , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia
13.
Drug Discov Today ; 27(3): 890-899, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34774765

RESUMO

Organoids are 3D stem cell-derived self-organization of cells. Organoid bioengineering helps recreate and tailor their architecture in vitro to generate mini organ-like properties, providing the opportunity to study fundamental cell behavior in heterogeneous populations and as a tool to model various diseases. Nanomaterials (NMs) are becoming indispensable in regenerative medicine and in developing treatment modalities for various diseases. Therefore, organoid-NM interactions are set to gain traction for the development of advanced diagnostics and therapeutics. Here, we discuss the interactions of NMs with distinctive organoid types, organoid matrices, trafficking and cargo delivery, organs-on-a-chip, bioprinting, downstream therapeutic implications, and future approaches.


Assuntos
Bioimpressão , Nanoestruturas , Organoides/metabolismo , Medicina Regenerativa , Células-Tronco
14.
Biophys Rev (Melville) ; 3(4): 041304, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38505516

RESUMO

Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.

15.
Biomolecules ; 11(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572488

RESUMO

Cardiac glycosides are natural sterols and constitute a group of secondary metabolites isolated from plants and animals. These cardiotonic agents are well recognized and accepted in the treatment of various cardiac diseases as they can increase the rate of cardiac contractions by acting on the cellular sodium potassium ATPase pump. However, a growing number of recent efforts were focused on exploring the antitumor and antiviral potential of these compounds. Several reports suggest their antitumor properties and hence, today cardiac glycosides (CG) represent the most diversified naturally derived compounds strongly recommended for the treatment of various cancers. Mutated or dysregulated transcription factors have also gained prominence as potential therapeutic targets that can be selectively targeted. Thus, we have explored the recent advances in CGs mediated cancer scope and have considered various signaling pathways, molecular aberration, transcription factors (TFs), and oncogenic genes to highlight potential therapeutic targets in cancer management.


Assuntos
Glicosídeos Cardíacos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Glicosídeos Cardíacos/farmacologia , Ensaios Clínicos como Assunto , Humanos , Simulação de Acoplamento Molecular , Neoplasias/patologia , Fatores de Transcrição/metabolismo
16.
Ann Biomed Eng ; 49(4): 1128-1150, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33674908

RESUMO

The need for bone grafts is tremendous, and that leads to the use of autograft, allograft, and bone graft substitutes. The biology of the bone is quite complex regarding cellular composition and architecture, hence developing a mineralized connective tissue graft is challenging. Traditionally used bone graft substitutes including metals, biomaterial coated metals and biodegradable scaffolds, suffer from persistent limitations. With the advent and rise of additive manufacturing technologies, the future of repairing bone trauma and defects seems to be optimistic. 3D printing has significant advantages, the foremost of all being faster manipulation of various biocompatible materials and live cells or tissues into the complex natural geometries necessary to mimic and stimulate cellular bone growth. The advent of new-generation bioprinters working with high-precision, micro-dispensing and direct digital manufacturing is aiding in ground-breaking organ and tissue printing, including the bone. The future bone replacement for patients holds excellent promise as scientists are moving closer to the generation of better 3D printed bio-bone grafts that will be safer and more effective. This review aims to summarize the advances in scaffold fabrication techniques, emphasizing 3D printing of biomimetic bone grafts.


Assuntos
Substitutos Ósseos , Impressão Tridimensional , Alicerces Teciduais , Animais , Biomimética , Transplante Ósseo , Osso e Ossos , Humanos
17.
World J Gastroenterol ; 27(46): 7925-7942, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-35046621

RESUMO

The disease coronavirus disease 2019 (COVID-19) is a severe respiratory illness that has emerged as a devastating health problem worldwide. The disease outcome is heterogeneous, and severity is likely dependent on the immunity of infected individuals and comorbidities. Although symptoms of the disease are primarily associated with respiratory problems, additional infection or failure of other vital organs are being reported. Emerging reports suggest a quite common co-existence of gastrointestinal (GI) tract symptoms in addition to respiratory symptoms in many COVID-19 patients, and some patients show just the GI symptoms. The possible cause of the GI symptoms could be due to direct infection of the epithelial cells of the gut, which is supported by the fact that (1) The intestinal epithelium expresses a high level of angiotensin-converting enzyme-2 and transmembrane protease serine 2 protein that are required for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into the cells; (2) About half of the severe COVID-19 patients show viral RNA in their feces and various parts of the GI tract; and (3) SARS-CoV-2 can directly infect gut epithelial cells in vitro (gut epithelial cells and organoids) and in vivo (rhesus monkey). The GI tract seems to be a site of active innate and adaptive immune responses to SARS-CoV-2 as clinically, stool samples of COVID-19 patients possess proinflammatory cytokines (interleukin 8), calprotectin (neutrophils activity), and immunoglobulin A antibodies. In addition to direct immune activation by the virus, impairment of GI epithelium integrity can evoke immune response under the influence of systemic cytokines, hypoxia, and changes in gut microbiota (dysbiosis) due to infection of the respiratory system, which is confirmed by the observation that not all of the GI symptomatic patients are viral RNA positive. This review comprehensively summarizes the possible GI immunomodulation by SARS-CoV-2 that could lead to GI symptoms, their association with disease severity, and potential therapeutic interventions.


Assuntos
COVID-19 , Disbiose , Humanos , Imunidade , Imunomodulação , SARS-CoV-2
18.
Arterioscler Thromb Vasc Biol ; 41(1): 220-233, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33086870

RESUMO

OBJECTIVE: Previous studies have shown that deficiency of M-CSF (macrophage colony-stimulating factor; or CSF1 [colony stimulating factor 1]) dramatically reduces atherosclerosis in hyperlipidemic mice. We characterize the underlying mechanism and investigate the relevant sources of CSF1 in lesions. Approach and Results: We quantitatively assessed the effects of CSF1 deficiency on macrophage proliferation and apoptosis in atherosclerotic lesions. Staining of aortic lesions with markers of proliferation, Ki-67 and bromodeoxyuridine, revealed around 40% reduction in CSF1 heterozygous (Csf1+/-) as compared with WT (wild type; Csf1+/+) mice. Similarly, staining with a marker of apoptosis, activated caspase-3, revealed a 3-fold increase in apoptotic cells in Csf1+/- mice. Next, we determined the cellular sources of CSF1 contributing to lesion development. Cell-specific deletions of Csf1 in smooth muscle cells using SM22α-Cre (smooth muscle protein 22-alpha-Cre) reduced lesions by about 40%, and in endothelial cells, deletions with Cdh5-Cre (VE-cadherin-Cre) reduced lesions by about 30%. Macrophage-specific deletion with LysM-Cre (lysozyme M-Cre), on the other hand, did not significantly reduce lesions size. Transplantation of Csf1 null (Csf1-/-) mice bone marrow into Csf1+/+ mice reduced lesions by about 35%, suggesting that CSF1 from hematopoietic cells other than macrophages contributes to atherosclerosis. None of the cell-specific knockouts affected circulating CSF1 levels, and only the smooth muscle cell deletions had any effect on the percentage monocytes in the circulation. Also, Csf1+/- mice did not exhibit significant differences in Ly6Chigh/Ly6Clow monocytes as compared with Csf1+/+. CONCLUSIONS: CSF1 contributes to both macrophage proliferation and survival in lesions. Local CSF1 production by smooth muscle cell and endothelial cell rather than circulating CSF1 is the primary driver of macrophage expansion in atherosclerosis.


Assuntos
Apoptose , Aterosclerose/metabolismo , Proliferação de Células , Células Endoteliais/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Aorta/metabolismo , Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Caderinas/genética , Caderinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Fator Estimulador de Colônias de Macrófagos/deficiência , Fator Estimulador de Colônias de Macrófagos/genética , Macrófagos/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais
19.
Am J Infect Control ; 49(3): 309-318, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32735810

RESUMO

BACKGROUND: The pandemic coronavirus disease 2019 (COVID-19) has taken a heavy toll on human life and has upended the medical system in many countries. The disease has created a system wide worsening shortage of N95, medical masks, and other personal protective equipment (PPE) that is regularly used by healthcare personnel and emergency service providers for their protection. AIM: Considering the number of infected patients and the stressed supplies of PPE, reuse of PPE can serve as an efficient contingency plan. Multiple studies have investigated the effect of different decontamination methods. METHODS: We chose the most user-friendly, easily scalable viral decontamination methods, including ultraviolet irradiation and heat treatment. In this paper, we investigated a unique approach to reuse the mask by creating a hybrid model that efficiently sanitizes the infected mask. RESULTS: The advantages of the proposed hybrid model as compared to the respective single arms is its decontamination efficacy, operational speed, as well as the number of reuse cycles as verified by mathematical analysis and simulation. This model is mainly intended for medical PPE but can also be used for other domestic and personal sanitization during the COVID-19 pandemic. As per the situation, the hybrid system can be used as standalone systems also. This sanitization process is not only limited to the elimination of Severe acute respiratory syndrome coronavirus 2 but can be extended to any other infectious agents. Thus, our results indicate that the proposed hybrid system is more effective, meets disinfection criterion and time saving for the reuse of respirators and PPE.


Assuntos
Desinfecção/métodos , Temperatura Alta , Equipamento de Proteção Individual/virologia , SARS-CoV-2/efeitos da radiação , Raios Ultravioleta , COVID-19/prevenção & controle , Descontaminação/métodos , Reutilização de Equipamento , Humanos , Máscaras/virologia , Dispositivos de Proteção Respiratória/virologia
20.
Cell Stem Cell ; 27(3): 413-429.e4, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32721381

RESUMO

Our understanding of dynamic interactions between airway basal stem cells (ABSCs) and their signaling niches in homeostasis, injury, and aging remains elusive. Using transgenic mice and pharmacologic studies, we found that Wnt/ß-catenin within ABSCs was essential for proliferation post-injury in vivo. ABSC-derived Wnt ligand production was dispensable for epithelial proliferation. Instead, the PDGFRα+ lineage in the intercartilaginous zone (ICZ) niche transiently secreted Wnt ligand necessary for ABSC proliferation. Strikingly, ABSC-derived Wnt ligand later drove early progenitor differentiation to ciliated cells. We discovered additional changes in aging, as glandular-like epithelial invaginations (GLEIs) derived from ABSCs emerged exclusively in the ICZ of aged mice and contributed to airway homeostasis and repair. Further, ABSC Wnt ligand secretion was necessary for GLEI formation, and constitutive activation of ß-catenin in young mice induced their formation in vivo. Collectively, these data underscore multiple spatiotemporally dynamic Wnt-secreting niches that regulate functionally distinct phases of airway regeneration and aging.


Assuntos
Células-Tronco , beta Catenina , Envelhecimento , Animais , Diferenciação Celular , Proliferação de Células , Camundongos , Camundongos Transgênicos , Células-Tronco/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...