Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Infect Control Hosp Epidemiol ; : 1-8, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415308

RESUMO

BACKGROUND: Emerging multidrug-resistant organisms (MDROs), such as carbapenem-resistant Enterobacterales (CRE), can spread rapidly in a region. Facilities that care for high-acuity patients with longer stays may have a disproportionate impact on this spread. OBJECTIVE: We assessed the impact of implementing preventive interventions, directed at a subset of facilities, on regional prevalence. METHODS: We developed a deterministic compartmental model, parametrized using CRE and patient transfer data. The model included the community and healthcare facilities within a US state. Individuals may be either susceptible or infectious with CRE. Individuals determined to be infectious through admission screening, periodic prevalence surveys (PPSs), or interfacility communication were placed in a state of lower transmissibility if enhanced infection prevention and control (IPC) practices were in place at a facility. RESULTS: Intervention bundles that included PPS and enhanced IPC practices at ventilator-capable skilled nursing facilities (vSNFs) and long-term acute-care hospitals (LTACHs) had the greatest impact on regional prevalence. The benefits of including targeted admission screening in acute-care hospitals, LTACHs, and vSNFs, and improved interfacility communication were more modest. Daily transmissions in each facility type were reduced following the implementation of interventions primarily focused at LTACHs and vSNFs. CONCLUSIONS: Our model suggests that interventions that include screening to limit unrecognized MDRO introduction to, or dispersal from, LTACHs and vSNFs slow regional spread. Interventions that pair detection and enhanced IPC practices within LTACHs and vSNFs may substantially reduce the regional burden.

2.
Clin Infect Dis ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072652

RESUMO

BACKGROUND: Antiviral chemoprophylaxis is recommended for use during influenza outbreaks in nursing homes to prevent transmission and severe disease among non-ill residents. Centers for Disease Control and Prevention (CDC) guidance recommends prophylaxis be initiated for all non-ill residents once an influenza outbreak is detected and be continued for at least 14 days and until seven days after the last laboratory-confirmed influenza case is identified. However, not all facilities strictly adhere to this guidance and the impact of such partial adherence is not fully understood. METHODS: We developed a stochastic compartmental framework to model influenza transmission within an average-sized U.S. nursing home. We compared the number of symptomatic illnesses and hospitalizations under varying prophylaxis implementation strategies, in addition to different levels of prophylaxis uptake and adherence by residents and healthcare personnel (HCP). RESULTS: Prophylaxis implemented according to current guidance reduced total symptomatic illnesses and hospitalizations among residents by an average of 12% and 36%, respectively, compared with no prophylaxis. We did not find evidence that alternative implementations of prophylaxis were more effective: compared to full adoption of current guidance, partial adoption resulted in increased symptomatic illnesses and/or hospitalizations, and longer or earlier adoption offered no additional improvements. In addition, increasing uptake and adherence among nursing home residents was effective in reducing resident illnesses and hospitalizations, but increasing HCP uptake had minimal indirect impacts for residents. CONCLUSIONS: The greatest benefits of influenza prophylaxis during nursing home outbreaks will likely be achieved through increasing uptake and adherence among residents and following current CDC guidance.

3.
Lancet Public Health ; 8(8): e618-e628, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37516478

RESUMO

BACKGROUND: On Aug 29, 2021, Operation Allies Welcome (OAW) was established to support the resettlement of more than 80 000 Afghan evacuees in the USA. After identification of measles among evacuees, incoming evacuee flights were temporarily paused, and mass measles vaccination of evacuees aged 6 months or older was introduced domestically and overseas, with a 21-day quarantine period after vaccination. We aimed to evaluate patterns of measles virus transmission during this outbreak and the impact of control measures. METHODS: We conducted a measles outbreak investigation among Afghan evacuees who were resettled in the USA as part of OAW. Patients with measles were defined as individuals with an acute febrile rash illness between Aug 29, 2021, and Nov 26, 2021, and either laboratory confirmation of infection or epidemiological link to a patient with measles with laboratory confirmation. We analysed the demographics and clinical characteristics of patients with measles and used epidemiological information and whole-genome sequencing to track transmission pathways. A transmission model was used to evaluate the effects of vaccination and other interventions. FINDINGS: 47 people with measles (attack rate: 0·65 per 1000 evacuees) were reported in six US locations housing evacuees in four states. The median age of patients was 1 year (range 0-26); 33 (70%) were younger than 5 years. The age distribution shifted during the outbreak towards infants younger than 12 months. 20 (43%) patients with wild-type measles virus had rash onset after vaccination. No fatalities or community spread were identified, nor further importations after flight resumption. In a non-intervention scenario, transmission models estimated that a median of 5506 cases (IQR 10-5626) could have occurred. Infection clusters based on epidemiological criteria could be delineated into smaller clusters using phylogenetic analyses; however, sequences with few substitution count differences did not always indicate single lines of transmission. INTERPRETATION: Implementation of control measures limited measles transmission during OAW. Our findings highlight the importance of integration between epidemiological and genetic information in discerning between individual lines of transmission in an elimination setting. FUNDING: US Centers for Disease Control and Prevention.


Assuntos
Exantema , Sarampo , Lactente , Humanos , Vírus do Sarampo/genética , Saúde Pública , Filogenia , Sarampo/epidemiologia , Sarampo/prevenção & controle , Estudos Epidemiológicos
4.
MMWR Morb Mortal Wkly Rep ; 72(24): 651-656, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319011

RESUMO

CDC has used national genomic surveillance since December 2020 to monitor SARS-CoV-2 variants that have emerged throughout the COVID-19 pandemic, including the Omicron variant. This report summarizes U.S. trends in variant proportions from national genomic surveillance during January 2022-May 2023. During this period, the Omicron variant remained predominant, with various descendant lineages reaching national predominance (>50% prevalence). During the first half of 2022, BA.1.1 reached predominance by the week ending January 8, 2022, followed by BA.2 (March 26), BA.2.12.1 (May 14), and BA.5 (July 2); the predominance of each variant coincided with surges in COVID-19 cases. The latter half of 2022 was characterized by the circulation of sublineages of BA.2, BA.4, and BA.5 (e.g., BQ.1 and BQ.1.1), some of which independently acquired similar spike protein substitutions associated with immune evasion. By the end of January 2023, XBB.1.5 became predominant. As of May 13, 2023, the most common circulating lineages were XBB.1.5 (61.5%), XBB.1.9.1 (10.0%), and XBB.1.16 (9.4%); XBB.1.16 and XBB.1.16.1 (2.4%), containing the K478R substitution, and XBB.2.3 (3.2%), containing the P521S substitution, had the fastest doubling times at that point. Analytic methods for estimating variant proportions have been updated as the availability of sequencing specimens has declined. The continued evolution of Omicron lineages highlights the importance of genomic surveillance to monitor emerging variants and help guide vaccine development and use of therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiologia , Genômica
5.
PLoS One ; 18(6): e0275125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352280

RESUMO

BACKGROUND: Understanding the drivers of SARS-CoV-2 transmission can inform the development of interventions. We evaluated transmission identified by contact tracing investigations between March-May 2020 in Salt Lake County, Utah, to quantify the impact of this intervention and identify risk factors for transmission. METHODS: RT-PCR positive and untested symptomatic contacts were classified as confirmed and probable secondary case-patients, respectively. We compared the number of case-patients and close contacts generated by different groups, and used logistic regression to evaluate factors associated with transmission. RESULTS: Data were collected on 184 index case-patients and up to six generations of contacts. Of 1,499 close contacts, 374 (25%) were classified as secondary case-patients. Decreased transmission odds were observed for contacts aged <18 years (OR = 0.55 [95% CI: 0.38-0.79]), versus 18-44 years, and for workplace (OR = 0.36 [95% CI: 0.23-0.55]) and social (OR = 0.44 [95% CI: 0.28-0.66]) contacts, versus household contacts. Higher transmission odds were observed for case-patient's spouses than other household contacts (OR = 2.25 [95% CI: 1.52-3.35]). Compared to index case-patients identified in the community, secondary case-patients identified through contract-tracing generated significantly fewer close contacts and secondary case-patients of their own. Transmission was heterogeneous, with 41% of index case-patients generating 81% of directly-linked secondary case-patients. CONCLUSIONS: Given sufficient resources and complementary public health measures, contact tracing can contain known chains of SARS-CoV-2 transmission. Transmission is associated with age and exposure setting, and can be highly variable, with a few infections generating a disproportionately high share of onward transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Utah/epidemiologia , Busca de Comunicante , Fatores de Risco
6.
MMWR Morb Mortal Wkly Rep ; 72(5): 125-127, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730050

RESUMO

Monitoring emerging SARS-CoV-2 lineages and their epidemiologic characteristics helps to inform public health decisions regarding vaccine policy, the use of therapeutics, and health care capacity. When the SARS-CoV-2 Alpha variant emerged in late 2020, a spike gene (S-gene) deletion (Δ69-70) in the N-terminal region, which might compensate for immune escape mutations that impair infectivity (1), resulted in reduced or failed S-gene target amplification in certain multitarget reverse transcription-polymerase chain reaction (RT-PCR) assays, a pattern referred to as S-gene target failure (SGTF) (2). The predominant U.S. SARS-CoV-2 lineages have generally alternated between SGTF and S-gene target presence (SGTP), which alongside genomic sequencing, has facilitated early monitoring of emerging variants. During a period when Omicron BA.5-related sublineages (which exhibit SGTF) predominated, an XBB.1.5 sublineage with SGTP has rapidly expanded in the northeastern United States and other regions.


Assuntos
COVID-19 , Saúde Pública , Estados Unidos/epidemiologia , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Mutação , Teste para COVID-19
7.
Clin Infect Dis ; 75(Suppl 2): S225-S230, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35724112

RESUMO

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Omicron variant has been hypothesized to exhibit faster clearance (time from peak viral concentration to clearance of acute infection), decreased sensitivity of antigen tests, and increased immune escape (the ability of the variant to evade immunity conferred by past infection or vaccination) compared to prior variants. These factors necessitate reevaluation of prevention and control strategies, particularly in high-risk, congregate settings like nursing homes that have been heavily impacted by other coronavirus disease 2019 (COVID-19) variants. We used a simple model representing individual-level viral shedding dynamics to estimate the optimal strategy for testing nursing home healthcare personnel and quantify potential reduction in transmission of COVID-19. This provides a framework for prospectively evaluating testing strategies in emerging variant scenarios when data are limited. We find that case-initiated testing prevents 38% of transmission within a facility if implemented within a day of an index case testing positive, and screening testing strategies could prevent 30% to 78% of transmission within a facility if implemented daily, depending on test sensitivity.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Atenção à Saúde , Humanos , Casas de Saúde
9.
Sci Rep ; 12(1): 8630, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606393

RESUMO

We expanded a published mathematical model of SARS-CoV-2 transmission with complex, age-structured transmission and with laboratory-derived source and wearer protection efficacy estimates for a variety of face masks to estimate their impact on COVID-19 incidence and related mortality in the United States. The model was also improved to allow realistic age-structured transmission with a pre-specified R0 of transmission, and to include more compartments and parameters, e.g. for groups such as detected and undetected asymptomatic infectious cases who mask up at different rates. When masks are used at typically-observed population rates of 80% for those ≥ 65 years and 60% for those < 65 years, face masks are associated with 69% (cloth) to 78% (medical procedure mask) reductions in cumulative COVID-19 infections and 82% (cloth) to 87% (medical procedure mask) reductions in related deaths over a 6-month timeline in the model, assuming a basic reproductive number of 2.5. If cloth or medical procedure masks' source control and wearer protection efficacies are boosted about 30% each to 84% and 60% by cloth over medical procedure masking, fitters, or braces, the COVID-19 basic reproductive number of 2.5 could be reduced to an effective reproductive number ≤ 1.0, and from 6.0 to 2.3 for a variant of concern similar to delta (B.1.617.2). For variants of concern similar to omicron (B.1.1.529) or the sub-lineage BA.2, modeled reductions in effective reproduction number due to similar high quality, high prevalence mask wearing is more modest (to 3.9 and 5.0 from an R0 = 10.0 and 13.0, respectively). None-the-less, the ratio of incident risk for masked vs. non-masked populations still shows a benefit of wearing masks even with the higher R0 variants.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Máscaras , Têxteis , Estados Unidos/epidemiologia
10.
Vaccine ; 40(23): 3165-3173, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35487811

RESUMO

As of 2 September 2021, United States nursing homes have reported >675,000 COVID-19 cases and >134,000 deaths according to the Centers for Medicare & Medicaid Services (CMS). More than 205,000,000 persons in the United States had received at least one dose of a COVID-19 vaccine (62% of total population) as of 2 September 2021. We investigate the role of vaccination in controlling future COVID-19 outbreaks. We developed a stochastic, compartmental model of SARS-CoV-2 transmission in a 100-bed nursing home with a staff of 99 healthcare personnel (HCP) in a community of 20,000 people. We parameterized admission and discharge of residents in the model with CMS data, for a within-facility basic reproduction number (R0) of 3.5 and a community R0 of 2.5. The model also included: importation of COVID-19 from the community, isolation of SARS-CoV-2 positive residents, facility-wide adherence to personal protective equipment (PPE) use by HCP, and testing. We systematically varied coverage of mRNA vaccine among residents, HCP, and the community. Simulations were run for 6 months after the second dose in the facility, with results summarized over 1,000 simulations. Expected resident cases decreased as community vaccination increased, with large reductions at high HCP coverage. The probability of a COVID-19 outbreak was lower as well: at HCP vaccination coverage of 60%, probability of an outbreak was below 20% for community coverage of 50% or above. At high coverage, stopping asymptomatic screening and facility-wide testing yielded similar results. Results suggest that high coverage among HCP and in the community can prevent infections in residents. When vaccination is high in nursing homes, but not in their surrounding communities, asymptomatic and facility-wide testing remains necessary to prevent the spread of COVID-19. High adherence to PPE may increase the likelihood of containing future COVID-19 outbreaks if they occur.


Assuntos
COVID-19 , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Surtos de Doenças/prevenção & controle , Humanos , Medicare , Casas de Saúde , SARS-CoV-2 , Estados Unidos/epidemiologia , Cobertura Vacinal , Vacinas Sintéticas , Vacinas de mRNA
11.
Vaccine ; 40(14): 2134-2139, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35260267

RESUMO

The Advisory Committee on Immunization Practices (ACIP) recommended phased allocation of SARS-CoV-2 vaccines in December 2020. To support the development of this guidance, we used a mathematical model of SARS-CoV-2 transmission to evaluate the relative impact of three vaccine allocation strategies on infections, hospitalizations, and deaths. All three strategies initially prioritized healthcare personnel (HCP) for vaccination. Strategies of subsequently prioritizing adults aged ≥65 years, or a combination of essential workers and adults aged ≥75 years, prevented the most deaths. Meanwhile, prioritizing adults with high-risk medical conditions immediately after HCP prevented the most infections. All three strategies prevented a similar fraction of hospitalizations. While no model is capable of fully capturing the complex social dynamics which shape epidemics, exercises such as this one can be a useful way for policy makers to formalize their assumptions and explore the key features of a problem before making decisions.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Idoso , COVID-19/prevenção & controle , Humanos , Imunização , SARS-CoV-2 , Estados Unidos/epidemiologia , Vacinação
12.
MMWR Morb Mortal Wkly Rep ; 71(6): 206-211, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143464

RESUMO

Genomic surveillance is a critical tool for tracking emerging variants of SARS-CoV-2 (the virus that causes COVID-19), which can exhibit characteristics that potentially affect public health and clinical interventions, including increased transmissibility, illness severity, and capacity for immune escape. During June 2021-January 2022, CDC expanded genomic surveillance data sources to incorporate sequence data from public repositories to produce weighted estimates of variant proportions at the jurisdiction level and refined analytic methods to enhance the timeliness and accuracy of national and regional variant proportion estimates. These changes also allowed for more comprehensive variant proportion estimation at the jurisdictional level (i.e., U.S. state, district, territory, and freely associated state). The data in this report are a summary of findings of recent proportions of circulating variants that are updated weekly on CDC's COVID Data Tracker website to enable timely public health action.† The SARS-CoV-2 Delta (B.1.617.2 and AY sublineages) variant rose from 1% to >50% of viral lineages circulating nationally during 8 weeks, from May 1-June 26, 2021. Delta-associated infections remained predominant until being rapidly overtaken by infections associated with the Omicron (B.1.1.529 and BA sublineages) variant in December 2021, when Omicron increased from 1% to >50% of circulating viral lineages during a 2-week period. As of the week ending January 22, 2022, Omicron was estimated to account for 99.2% (95% CI = 99.0%-99.5%) of SARS-CoV-2 infections nationwide, and Delta for 0.7% (95% CI = 0.5%-1.0%). The dynamic landscape of SARS-CoV-2 variants in 2021, including Delta- and Omicron-driven resurgences of SARS-CoV-2 transmission across the United States, underscores the importance of robust genomic surveillance efforts to inform public health planning and practice.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , Centers for Disease Control and Prevention, U.S. , Genômica , Humanos , Prevalência , Vigilância em Saúde Pública/métodos , Estados Unidos/epidemiologia
13.
Clin Infect Dis ; 75(1): 152-154, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34755856

RESUMO

Responding to measles outbreaks in the United States puts a considerable strain on public health resources, and limited research exists about the effectiveness of containment strategies. In this paper we quantify the impact of isolation, contact tracing, and exclusion in reducing transmission during a measles outbreak in an under-vaccinated community.


Assuntos
Sarampo , Saúde Pública , Busca de Comunicante , Surtos de Doenças/prevenção & controle , Humanos , Sarampo/epidemiologia , Sarampo/prevenção & controle , Vacina contra Sarampo , Vírus do Sarampo , Estados Unidos/epidemiologia
14.
BMC Public Health ; 21(1): 1412, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271883

RESUMO

BACKGROUND: Antimicrobial resistance is a global health emergency. Persons colonized with multidrug-resistant organisms (MDROs) are at risk for developing subsequent multidrug-resistant infections, as colonization represents an important precursor to invasive infection. Despite reports documenting the worldwide dissemination of MDROs, fundamental questions remain regarding the burden of resistance, metrics to measure prevalence, and determinants of spread. We describe a multi-site colonization survey protocol that aims to quantify the population-based prevalence and associated risk factors for colonization with high-threat MDROs among community dwelling participants and patients admitted to hospitals within a defined population-catchment area. METHODS: Researchers in five countries (Bangladesh, Chile, Guatemala, Kenya, and India) will conduct a cross-sectional, population-based prevalence survey consisting of a risk factor questionnaire and collection of specimens to evaluate colonization with three high-threat MDROs: extended-spectrum cephalosporin-resistant Enterobacteriaceae (ESCrE), carbapenem-resistant Enterobacteriaceae (CRE), and methicillin-resistant Staphylococcus aureus (MRSA). Healthy adults residing in a household within the sampling area will be enrolled in addition to eligible hospitalized adults. Colonizing isolates of these MDROs will be compared by multilocus sequence typing (MLST) to routinely collected invasive clinical isolates, where available, to determine potential pathogenicity. A colonizing MDRO isolate will be categorized as potentially pathogenic if the MLST pattern of the colonizing isolate matches the MLST pattern of an invasive clinical isolate. The outcomes of this study will be estimates of the population-based prevalence of colonization with ESCrE, CRE, and MRSA; determination of the proportion of colonizing ESCrE, CRE, and MRSA with pathogenic characteristics based on MLST; identification of factors independently associated with ESCrE, CRE, and MRSA colonization; and creation an archive of ESCrE, CRE, and MRSA isolates for future study. DISCUSSION: This is the first study to use a common protocol to evaluate population-based prevalence and risk factors associated with MDRO colonization among community-dwelling and hospitalized adults in multiple countries with diverse epidemiological conditions, including low- and middle-income settings. The results will be used to better describe the global epidemiology of MDROs and guide the development of mitigation strategies in both community and healthcare settings. These standardized baseline surveys can also inform future studies seeking to further characterize MDRO epidemiology globally.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Adulto , Bangladesh , Chile , Estudos Transversais , Farmacorresistência Bacteriana Múltipla , Guatemala , Hospitais , Humanos , Índia , Quênia , Tipagem de Sequências Multilocus , Prevalência , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia
15.
MMWR Morb Mortal Wkly Rep ; 70(23): 846-850, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34111060

RESUMO

SARS-CoV-2, the virus that causes COVID-19, is constantly mutating, leading to new variants (1). Variants have the potential to affect transmission, disease severity, diagnostics, therapeutics, and natural and vaccine-induced immunity. In November 2020, CDC established national surveillance for SARS-CoV-2 variants using genomic sequencing. As of May 6, 2021, sequences from 177,044 SARS-CoV-2-positive specimens collected during December 20, 2020-May 6, 2021, from 55 U.S. jurisdictions had been generated by or reported to CDC. These included 3,275 sequences for the 2-week period ending January 2, 2021, compared with 25,000 sequences for the 2-week period ending April 24, 2021 (0.1% and 3.1% of reported positive SARS-CoV-2 tests, respectively). Because sequences might be generated by multiple laboratories and sequence availability varies both geographically and over time, CDC developed statistical weighting and variance estimation methods to generate population-based estimates of the proportions of identified variants among SARS-CoV-2 infections circulating nationwide and in each of the 10 U.S. Department of Health and Human Services (HHS) geographic regions.* During the 2-week period ending April 24, 2021, the B.1.1.7 and P.1 variants represented an estimated 66.0% and 5.0% of U.S. SARS-CoV-2 infections, respectively, demonstrating the rise to predominance of the B.1.1.7 variant of concern† (VOC) and emergence of the P.1 VOC in the United States. Using SARS-CoV-2 genomic surveillance methods to analyze surveillance data produces timely population-based estimates of the proportions of variants circulating nationally and regionally. Surveillance findings demonstrate the potential for new variants to emerge and become predominant, and the importance of robust genomic surveillance. Along with efforts to characterize the clinical and public health impact of SARS-CoV-2 variants, surveillance can help guide interventions to control the COVID-19 pandemic in the United States.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , COVID-19/epidemiologia , Monitoramento Epidemiológico , Humanos , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia
16.
BMC Med ; 19(1): 94, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33849546

RESUMO

BACKGROUND: Balancing the control of SARS-CoV-2 transmission with the resumption of travel is a global priority. Current recommendations include mitigation measures before, during, and after travel. Pre- and post-travel strategies including symptom monitoring, antigen or nucleic acid amplification testing, and quarantine can be combined in multiple ways considering different trade-offs in feasibility, adherence, effectiveness, cost, and adverse consequences. METHODS: We used a mathematical model to analyze the expected effectiveness of symptom monitoring, testing, and quarantine under different estimates of the infectious period, test-positivity relative to time of infection, and test sensitivity to reduce the risk of transmission from infected travelers during and after travel. RESULTS: If infection occurs 0-7 days prior to travel, immediate isolation following symptom onset prior to or during travel reduces risk of transmission while traveling by 30-35%. Pre-departure testing can further reduce risk, with testing closer to the time of travel being optimal even if test sensitivity is lower than an earlier test. For example, testing on the day of departure can reduce risk while traveling by 44-72%. For transmission risk after travel with infection time up to 7 days prior to arrival at the destination, isolation based on symptom monitoring reduced introduction risk at the destination by 42-56%. A 14-day quarantine after arrival, without symptom monitoring or testing, can reduce post-travel risk by 96-100% on its own. However, a shorter quarantine of 7 days combined with symptom monitoring and a test on day 5-6 after arrival is also effective (97--100%) at reducing introduction risk and is less burdensome, which may improve adherence. CONCLUSIONS: Quarantine is an effective measure to reduce SARS-CoV-2 transmission risk from travelers and can be enhanced by the addition of symptom monitoring and testing. Optimal test timing depends on the effectiveness of quarantine: with low adherence or no quarantine, optimal test timing is close to the time of arrival; with effective quarantine, testing a few days later optimizes sensitivity to detect those infected immediately before or while traveling. These measures can complement recommendations such as social distancing, using masks, and hand hygiene, to further reduce risk during and after travel.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Quarentena/métodos , Doença Relacionada a Viagens , COVID-19/diagnóstico , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Modelos Estatísticos , SARS-CoV-2/isolamento & purificação
17.
Clin Infect Dis ; 73(3): e792-e798, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33564862

RESUMO

BACKGROUND: Identifying asymptomatic individuals early through serial testing is recommended to control coronavirus disease 2019 (COVID-19) in nursing homes, both in response to an outbreak ("outbreak testing" of residents and healthcare personnel) and in facilities without outbreaks ("nonoutbreak testing" of healthcare personnel). The effectiveness of outbreak testing and isolation with or without nonoutbreak testing was evaluated. METHODS: Using published SARS-CoV-2 transmission parameters, the fraction of SARS-CoV-2 transmissions prevented through serial testing (weekly, every 3 days, or daily) and isolation of asymptomatic persons compared with symptom-based testing and isolation was evaluated through mathematical modeling using a Reed-Frost model to estimate the percentage of cases prevented (ie, "effectiveness") through either outbreak testing alone or outbreak plus nonoutbreak testing. The potential effect of simultaneous decreases (by 10%) in the effectiveness of isolating infected individuals when instituting testing strategies was also evaluated. RESULTS: Modeling suggests that outbreak testing could prevent 54% (weekly testing with 48-hour test turnaround) to 92% (daily testing with immediate results and 50% relative sensitivity) of SARS-CoV-2 infections. Adding nonoutbreak testing could prevent up to an additional 8% of SARS-CoV-2 infections (depending on test frequency and turnaround time). However, added benefits of nonoutbreak testing were mostly negated if accompanied by decreases in infection control practice. CONCLUSIONS: When combined with high-quality infection control practices, outbreak testing could be an effective approach to preventing COVID-19 in nursing homes, particularly if optimized through increased test frequency and use of tests with rapid turnaround.


Assuntos
COVID-19 , Surtos de Doenças/prevenção & controle , Pessoal de Saúde , Humanos , Casas de Saúde , SARS-CoV-2 , Estados Unidos/epidemiologia
18.
Pediatrics ; 147(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33504612

RESUMO

OBJECTIVES: In late June 2020, a large outbreak of coronavirus disease 2019 (COVID-19) occurred at a sleep-away youth camp in Georgia, affecting primarily persons ≤21 years. We conducted a retrospective cohort study among campers and staff (attendees) to determine the extent of the outbreak and assess factors contributing to transmission. METHODS: Attendees were interviewed to ascertain demographic characteristics, known exposures to COVID-19 and community exposures, and mitigation measures before, during, and after attending camp. COVID-19 case status was determined for all camp attendees on the basis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test results and reported symptoms. We calculated attack rates and instantaneous reproduction numbers and sequenced SARS-CoV-2 viral genomes from the outbreak. RESULTS: Among 627 attendees, the median age was 15 years (interquartile range: 12-16 years); 56% (351 of 627) of attendees were female. The attack rate was 56% (351 of 627) among all attendees. On the basis of date of illness onset or first positive test result on a specimen collected, 12 case patients were infected before arriving at camp and 339 case patients were camp associated. Among 288 case patients with available symptom information, 45 (16%) were asymptomatic. Despite cohorting, 50% of attendees reported direct contact with people outside their cabin cohort. On the first day of camp session, the instantaneous reproduction number was 10. Viral genomic diversity was low. CONCLUSIONS: Few introductions of SARS-CoV-2 into a youth congregate setting resulted in a large outbreak. Testing strategies should be combined with prearrival quarantine, routine symptom monitoring with appropriate isolation and quarantine, cohorting, social distancing, mask wearing, and enhanced disinfection and hand hygiene. Promotion of mitigation measures among younger populations is needed.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Acampamento , Surtos de Doenças , Adolescente , Adulto , Criança , Estudos de Coortes , Feminino , Georgia/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
19.
Clin Infect Dis ; 72(Suppl 1): S17-S26, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33512523

RESUMO

BACKGROUND: Treating patients with infections due to multidrug-resistant pathogens often requires substantial healthcare resources. The purpose of this study was to report estimates of the healthcare costs associated with infections due to multidrug-resistant bacteria in the United States (US). METHODS: We performed retrospective cohort studies of patients admitted for inpatient stays in the Department of Veterans Affairs healthcare system between January 2007 and October 2015. We performed multivariable generalized linear models to estimate the attributable cost by comparing outcomes in patients with and without positive cultures for multidrug-resistant bacteria. Finally, we multiplied these pathogen-specific, per-infection attributable cost estimates by national counts of infections due to each pathogen from patients hospitalized in a cohort of 722 US hospitals from 2017 to generate estimates of the population-level healthcare costs in the US attributable to these infections. RESULTS: Our analysis cohort consisted of 16 676 patients with community-onset infections and 172 712 matched controls and 8246 patients with hospital-onset infections and 66 939 matched controls. The highest cost was seen in hospital-onset invasive infections, with attributable costs (95% confidence intervals) ranging from $30 998 ($25 272-$36 724) for methicillin-resistant Staphylococcus aureus to $74 306 ($20 377-$128 235) for carbapenem-resistant (CR) Acinetobacter. The highest attributable costs for community-onset invasive infections were seen in CR Acinetobacter ($62 396; $20 370-$104 422). Treatment of these infections cost an estimated $4.6 billion ($4.1 billion-$5.1 billion) in 2017 in the US for community- and hospital-onset infections combined. CONCLUSIONS: We found that antimicrobial-resistant infections led to substantial healthcare costs.


Assuntos
Infecções Bacterianas , Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Farmacorresistência Bacteriana Múltipla , Custos de Cuidados de Saúde , Humanos , Estudos Retrospectivos , Infecções Estafilocócicas/tratamento farmacológico , Estados Unidos/epidemiologia
20.
MMWR Morb Mortal Wkly Rep ; 70(3): 95-99, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33476315

RESUMO

On December 14, 2020, the United Kingdom reported a SARS-CoV-2 variant of concern (VOC), lineage B.1.1.7, also referred to as VOC 202012/01 or 20I/501Y.V1.* The B.1.1.7 variant is estimated to have emerged in September 2020 and has quickly become the dominant circulating SARS-CoV-2 variant in England (1). B.1.1.7 has been detected in over 30 countries, including the United States. As of January 13, 2021, approximately 76 cases of B.1.1.7 have been detected in 12 U.S. states.† Multiple lines of evidence indicate that B.1.1.7 is more efficiently transmitted than are other SARS-CoV-2 variants (1-3). The modeled trajectory of this variant in the U.S. exhibits rapid growth in early 2021, becoming the predominant variant in March. Increased SARS-CoV-2 transmission might threaten strained health care resources, require extended and more rigorous implementation of public health strategies (4), and increase the percentage of population immunity required for pandemic control. Taking measures to reduce transmission now can lessen the potential impact of B.1.1.7 and allow critical time to increase vaccination coverage. Collectively, enhanced genomic surveillance combined with continued compliance with effective public health measures, including vaccination, physical distancing, use of masks, hand hygiene, and isolation and quarantine, will be essential to limiting the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). Strategic testing of persons without symptoms but at higher risk of infection, such as those exposed to SARS-CoV-2 or who have frequent unavoidable contact with the public, provides another opportunity to limit ongoing spread.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , COVID-19/transmissão , Genoma Viral , Humanos , Mutação , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...