Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37834493

RESUMO

Supported gold nanoparticles have proven to be highly effective catalysts for the base-free oxidation of furfural, a compound derived from biomass. Their small size enables a high surface-area-to-volume ratio, providing abundant active sites for the reaction to take place. These gold nanoparticles serve as catalysts by providing surfaces for furfural molecules to adsorb onto and facilitating electron transfer between the substrate and the oxidizing agent. The role of the support in this reaction has been widely studied, and gold-support interactions have been found to be beneficial. However, the exact mechanism of furfural oxidation under base-free conditions remains an active area of research and is not yet fully understood. In this review, we delve into the essential factors that influence the selectivity of furfural oxidation. We present an optimization process that highlights the significant role of machine learning in identifying the best catalyst for this reaction. The principal objective of this study is to provide a comprehensive review of research conducted over the past five years concerning the catalytic oxidation of furfural under base-free conditions. By conducting tree decision making on experimental data from recent articles, a total of 93 gold-based catalysts are compared. The relative variable importance chart analysis reveals that the support preparation method and the pH of the solution are the most crucial factors determining the yield of furoic acid in this oxidation process.

2.
Cells ; 12(6)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36980190

RESUMO

Type 2 diabetes (T2D) is a metabolic disorder characterized by loss of pancreatic ß-cell function, decreased insulin secretion and increased insulin resistance, that affects more than 537 million people worldwide. Although several treatments are proposed to patients suffering from T2D, long-term control of glycemia remains a challenge. Therefore, identifying new potential drugs and targets that positively affect ß-cell function and insulin secretion remains crucial. Here, we developed an automated approach to allow the identification of new compounds or genes potentially involved in ß-cell function in a 384-well plate format, using the murine ß-cell model Min6. By using MALDI-TOF mass spectrometry, we implemented a high-throughput screening (HTS) strategy based on the automation of a cellular assay allowing the detection of insulin secretion in response to glucose, i.e., the quantitative detection of insulin, in a miniaturized system. As a proof of concept, we screened siRNA targeting well-know ß-cell genes and 1600 chemical compounds and identified several molecules as potential regulators of insulin secretion and/or synthesis, demonstrating that our approach allows HTS of insulin secretion in vitro.


Assuntos
Diabetes Mellitus Tipo 2 , Insulina , Humanos , Animais , Camundongos , Insulina/metabolismo , Secreção de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ensaios de Triagem em Larga Escala , Insulina Regular Humana/metabolismo
3.
Nanomaterials (Basel) ; 13(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36839003

RESUMO

The synthesis of methanol and dimethyl ether (DME) from carbon dioxide (CO2) and green hydrogen (H2) offers a sustainable pathway to convert CO2 emissions into value-added products. This heterogeneous catalytic reaction often uses copper (Cu) catalysts due to their low cost compared with their noble metal analogs. Nevertheless, improving the activity and selectivity of these Cu catalysts for these products is highly desirable. In the present study, a new architecture of Cu- and Cu/Zn-based catalysts supported on electrospun alumina nanofibers were synthesized. The catalysts were tested under various reaction conditions using high-throughput equipment to highlight the role of the hierarchical fibrous structure on the reaction activity and selectivity. The Cu or Cu/ZnO formed a unique structure of nanosheets, covering the alumina fiber surface. This exceptional morphology provides a large surface area, up to ~300 m2/g, accessible for reaction. Maximal production of methanol (~1106 gmethanolKgCu-1∙h-1) and DME (760 gDMEKgCu-1∙h-1) were obtained for catalysts containing 7% wt. Cu/Zn with a weight ratio of 2.3 Zn to Cu (at 300 °C, 50 bar). The promising results in CO2 hydrogenation to methanol and DME obtained here point out the significant advantage of nanofiber-based catalysts in heterogeneous catalysis.

4.
Molecules ; 27(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745022

RESUMO

The development of the future French and European bioeconomies will involve developing new green chemical processes in which catalytic transformations are key. The VAALBIO team (valorization of alkanes and biomass) of the UCCS laboratory (Unité de Catalyse et Chimie du Solide) are working on various catalytic processes, either developing new catalysts and/or designing the whole catalytic processes. Our research is focused on both the fundamental and applied aspects of the processes. Through this review paper, we demonstrate the main topics developed by our team focusing mostly on oxygen- and hydrogen-related processes as well as on green hydrogen production and hybrid catalysis. The social impacts of the bioeconomy are also discussed applying the concept of the institutional compass.


Assuntos
Hidrogênio , Lignina , Biomassa , Catálise
5.
ACS Appl Mater Interfaces ; 13(30): 35719-35728, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34288641

RESUMO

Exsolution is a promising technique to design metal nanoparticles for electrocatalysis and renewable energy. In this work, Ni-doped perovskites, (Pr0.5Ba0.5)1-x/2Mn1-x/2Nix/2O3-δ with x = 0, 0.05, 0.1, and 0.2 (S-PBMNx), were prepared to design exsolution systems as solid oxide fuel cell anodes and for catalysis applications. X-ray diffraction and transmission electron microscopy (TEM) analyses demonstrated that correlating A-site deficiency with Ni content can effectively induce exsolution of all Ni under H2 atmosphere at T ∼ 875 °C, yielding the reduced (exsolved) R-PBMNx materials. On heating the exsolution systems in air, metal incorporation in the oxide lattice did not occur; instead, the Ni nanoparticles oxidized to NiO on the layered perovskite surface. The lowest area-specific resistance (ASR) under wet 5% H2/N2 in symmetrical cells was observed for R-PBMN0.2 anode (ASR ∼ 0.64 Ω cm2 at 850 °C) due to the highest Ni particle density in the R-PBMNx series. The best performance for dry reforming of methane (DRM) was also obtained for R-PBMN0.2, with CH4 and CO2 conversion rates at 11 and 32%, respectively, and the highest production of H2 (37%). The DRM activity of R-PBMN0.2 starts at 800 °C and is sustained for up to at least 5 h operation with little carbon deposition (0.017 g·gcat-1·h-1). These results clearly demonstrate that varying Ni-doping in layered double perovskite oxides is an effective strategy to manipulate the electrochemical performance and catalytic activity for energy conversion purposes.

6.
Chemistry ; 27(12): 3997-4003, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33378130

RESUMO

A series of in situ-prepared catalytic systems incorporating RuII precursors and bidentate phosphine ligands has been probed in the reductive carboxylation of ethylene in the presence of triethylsilane as reductant. The catalytic production of propionate and acrylate silyl esters was evidenced by high-throughput screening (HTS) and implemented in batch reactor techniques. The most promising catalyst systems identified were made of Ru(H)(Cl)(CO)(PPh3 )3 and 1,4-bis(dicyclohexylphosphino)butane (DCPB) or 1,1'-ferrocene-diyl-bis(cyclohexylphosphine) (DCPF). A marked influence of water on the acrylate/propionate selectivity was noted. Turnover numbers [mol mol(Ru)-1 ] up to 16 for acrylate and up to 68 for propionate were reached under relatively mild conditions (20 bar, 100 °C, 0.5 mol % Ru, 40 mol % H2 O vs. HSiEt3 ). Possible mechanisms are discussed.

7.
ChemSusChem ; 13(19): 5164-5172, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32725856

RESUMO

2,5-furandicarboxylic acid (FDCA) is one of the most important bio-sourced building blocks and several routes have been reported for its synthesis. FDCA is presumed to be an ideal green alternative to terephthalate, which is one of the predominant monomers in polymer industry. This Minireview concerns the synthesis of FDCA by using various carboxylation reactions and discusses the synthesis of FDCA starting from furoic acid and CO2 and using different catalytic and stoichiometric processes. This process is of high interest, as it avoids the glucose isomerization step and selectivity issues observed during the 5-hydroxymethylfurfural oxidation step of the current alternative route to FDCA. Discussion focuses on the main parameters that govern selectivity and activity in the carboxylation processes. Moreover, various previously described processes, such as the Henkel reaction and enzymatic, homogeneous catalytic, and photoelectrocatalytic processes, are also discussed.

8.
Front Chem ; 8: 421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478039

RESUMO

One of the most interesting intermediates for the chemical industry is acrylic acid, which can be derived from lactic acid by catalytic dehydration in the gas phase. The realization of this reaction is complex due to a strong thermal activation leading to the formation of undesired by-products (acetaldehyde, propanoic acid…) as well as polymerization. We studied this reaction over hydroxyapatites modified by substitution of the hydroxyl groups by fluoride. This notably enabled increasing the selectivity to acrylic acid while reducing the formation of the undesired acetaldehyde. Introduction of fluoride induced a modification of the phosphate ( PO 4 3 - ) groups. In the presence of water, fluoride prevented the formation of hydrogenophosphate species ( HPO 4 2 - ), which are well-known acid sites responsible for the formation of acetaldehyde by decarboxylation/decarbonylation. Further, we evidenced an important impact of fluoride substitution on crystallinity, specific surface area and on the surface Ca/P ratio. This latter is known to be a key parameter to control the acidity and the basicity of the hydroxyapatites. Using FT-IR spectroscopy with propyne as a probe molecule, we could show that lactic acid was concertedly adsorbed on basic and acid sites, which might be at the origin of the observed superior performances.

9.
ACS Omega ; 5(24): 14283-14290, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596565

RESUMO

In this paper, Raman spectroscopy is used as a tool to study the mechanism of furfural oxidation using H2O2 as a reagent on gold nanoparticles (NPs) supported on hydrotalcites (HTs). This reaction was repeated, under the same conditions, but with different reaction times in a parallel multireactor system. The reaction media were analyzed using a macro device associated with a multipass cell permitting us to enhance the Raman signal by reflecting the laser beam 3 times. The Raman spectra showed the conversion of furfural to furoic acid without any chemical intermediates, thus privileging a direct pathway. Combining the results of the catalytic tests with those of the Raman study, the mechanism of furfural oxidation to furoic acid using gold NPs supported on HTs is proposed. The key points of this mechanism were found to be as follows: (i) the in situ formation of a base, originating from the Mg leaching from the HT support, initiates the oxidation of furfural by deprotonation; (ii) H2O2 used as a reagent in the solution increases the catalytic activity by its dissociation to form hydroxide ions; and (iii) the oxidation of furfural occurs on the surface of gold NPs and leads to higher furoic acid yield.

10.
Front Chem ; 7: 127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30923707

RESUMO

The gas-phase catalytic dehydration of glycerol to acrolein was carried out in a Two-Zone Fluidized-Bed Reactor (TZFBR) using a 20 wt. % phosphotungstic acid (H3PW12O40) catalyst supported on CARIACT-Q10 commercial silica. In the first step, a hydrodynamic study of the reactor was performed. A quality of fluidization of more than 80% was obtained. In the second step, the mechanical stability of the catalyst was studied. It was found that only the external layer of active phase is eliminated under the conditions of operation whereas the global composition of the catalyst was not significantly affected after 44 h of fluidization. Finally, in a third step, the influence of the main operating parameters on the overall catalytic performances (glycerol/oxygen molar ratio and relative volumes of the reaction and regeneration zones) was investigated, showing notably the importance of the O2/glycerol ratio, resulting in an inverse trend between conversion and selectivity. Increasing O2/glycerol ratio led to higher conversion (lower coke deposit as shown by TGA analysis), but to the detriment of the selectivity to acrolein, supposedly due to the presence of O2 in the reaction zone causing the degradation of glycerol and acrolein.

11.
Front Chem ; 7: 108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881953

RESUMO

Booming biodiesel production worldwide demands valorization of its byproduct of glycerol. Acrolein, an important intermediate chemical, can be produced by gas-phase glycerol dehydration catalyzed by solid acids. Because catalysts that lead to high acrolein selectivity usually deactivate rapidly due to the formation of coke that blocks the active sites on their surface, one major challenge of this method is how to extend the service life of the catalyst. Silica-supported silicotungstic acid (HSiW-Si) is a good example of such a catalyst that shows good activity in glycerol dehydration to acrolein initially, but deactivates quickly. In this study, HSiW-Si was selected to probe the potential of using non-thermal plasma with oxygen-containing gas as the discharge gas (NTP-O2) to solve the catalyst deactivation problem. NTP-O2 was found to be effective in coke removal and catalyst regeneration at low temperatures without damaging the Keggin structure of the HSiW-Si catalyst.

12.
RSC Adv ; 9(51): 29888-29901, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35531527

RESUMO

Supported bimetallic nanoparticles are particularly attractive catalysts due to increased activity and stability compared to their monometallic counterparts. In this work, gold-based catalysts have been studied as catalysts for the selective base-free oxidation of glucose. TiO2-supported Au-Pd and Au-Cu series prepared by the sol-immobilization and precipitation-reduction methods, respectively, showed a significant synergistic effect, particularly when the theoretical weight ratio of the two metals was close to 1 : 1 (with an actual experimental bulk Au/Pd molar ratio of ca. 0.8 and ca. 0.4 for Au/Cu) in both cases. XPS analysis showed that the presence of Au δ+, Pd2+ and CuOH species played an important role in the base-free glucose oxidation.

13.
J Colloid Interface Sci ; 530: 282-291, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29982020

RESUMO

Among the several classes of chemical reactions, the green oxidation of organic compounds has emerged as an important topic in nanocatalysis. Nonetheless, examples of truly green oxidations remain scarce due to the low activity and selectivity of reported catalysts. In this paper, we present an approach based on the optimization of both the support material and the active phase to achieve superior catalytic performances towards green oxidations. Specifically, our catalysts consisted of ultrasmall Au NPs deposited onto MnO2 nanoflowers. They displayed hierarchical morphology, large specific surface areas, ultrasmall and uniform Au NPs sizes, no agglomeration, strong metal-support interactions, oxygen vacancies, and Auδ+ species at their surface. These features led to improved performances towards the green oxidations of CO, benzene, toluene, o-xylene, glucose, and fructose relative to the pristine MnO2 nanoflowers, commercial MnO2 decorated with Au NPs, and other reported catalysts. We believe that the catalytic activities, stabilities, and mild/green reaction conditions described herein for both gas and liquid phase oxidations due to the optimization of both the support and active phase may inspire the development of novel catalytic systems for a wealth of sustainable transformations.

14.
ChemSusChem ; 9(12): 1413-23, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27115079

RESUMO

The catalytic conversion of alcohols into carboxylic acid salts in water was performed in the presence of ruthenium complexes supported by aliphatic PNP pincer ligands preformed or formed in situ. High activity toward a wide substrate scope was achieved with turnover number values of up to 4000. The air-stable catalytic system can be recycled by using toluene as a catalyst-immobilizing phase; the activity is maintained after five consecutive runs. Finally, mechanistic studies allowed some fundamental aspects related to water activation to be unveiled and to the mechanism postulated.


Assuntos
Álcoois/química , Ácidos Carboxílicos/química , Reciclagem , Sais/química , Água/química , Catálise , Hidrogenação , Rutênio/química
15.
ChemSusChem ; 5(7): 1298-306, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22505057

RESUMO

The dehydration reaction of glycerol to acrolein is catalyzed by acid catalysts. These catalysts tend to suffer from the formation of carbonaceous species on their surface (coking), which leads to substantial degradation of their performances (deactivation). To regenerate the as-deactivated catalysts, various techniques have been proposed so far, such as the co-feeding of oxygen, continuous regeneration by using a moving catalytic bed, or alternating between reaction and regeneration. Herein, we study the regeneration of supported heteropolyacid catalysts. We show that the support has a strong impact on the thermal stability of the active phase. In particular, zirconia has been found to stabilize silicotungstic acid, thus enabling the nondestructive regeneration of the catalyst. Furthermore, the addition of steam to the regeneration feed has a positive impact by hindering the degradation reaction by equilibrium displacement. The catalysts are further used in a periodic reaction/regeneration process, whereby the possibility of maintaining long-term catalytic performances is evidenced.


Assuntos
Glicerol/química , Silicatos/química , Dióxido de Silício/química , Compostos de Tungstênio/química , Água/química , Acroleína/química , Ar , Carbono/química , Catálise , Química Verde , Nitrogênio/química , Oxirredução
16.
Chem Commun (Camb) ; 47(22): 6413-5, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21556390

RESUMO

{Mo(132)} Keplerate anion reacts with tellurites to give a soluble precursor to produce in hydrothermal conditions single-phase M1 MoVTeO light-alkanes oxidation catalyst. Characterization of this Te-containing intermediate by single-crystal X-ray diffraction, (125)Te NMR, UV-visible and redox titration reveals a molybdotellurite anion as a crown-capped Keggin derivative.

17.
ChemSusChem ; 2(8): 719-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19693786

RESUMO

The massive increase in biodiesel production by transesterification of vegatable oils goes hand-in-hand with the availability of a large volume of glycerol, which must be valorized. Glycerol dehydration to acrolein over acid catalysts is one of the most promising ways of valorization, because this compound is an important chemical intermediate used in, for example, the DL-methionine synthesis. In this Minireview, we give a detailed critical view of the state-of-the-art of this dehydration reaction. The processes developed in both the liquid and the gas phases are detailed and the best catalytic results obtained so far are reported as a benchmark for future developments. The advances on the understanding of the reaction mechanism are also discussed and we further focus particularly on the main obstacles for an immediate industrial application of this technology, namely catalyst coking and crude glycerol direct-use issues.


Assuntos
Acroleína/síntese química , Glicerol/química , Química Verde/métodos , Catálise , Gases/química , Química Verde/economia , Água/química
18.
Inorg Chem ; 46(18): 7371-7, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17691723

RESUMO

Single crystals of the potassium salt K3(H2O)4[H2SiVW11O40](H2O)8+x of the vanadium monosubstituted alpha-Keggin dodecatunsgstosilicate were grown from an aqueous solution and analyzed by EDS, XRD, vibration and electronic spectroscopy, and 1H, 51V, and 29Si solid-state NMR spectroscopy. Results indicate the formation of a nanoporous-like compound of hexagonal symmetry (space group P62) with large, water-filled channels running along the c axis. A uniform distribution of vanadium over the 12 metal sites of the alpha-Keggin anion is observed by XRD. Two different neighborhoods were characterized by 51V NMR in a 2:1 ratio (deltaiso=-546.3 and -536.2 ppm), in accordance with a difference in the number of potassium ions in the second coordination shell of vanadium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...