Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38269407

RESUMO

Apical potassium channels are crucial for thick ascending limb (TAL) of Henle's loop transport function. The ROMK (KNCJ1) gene encodes a 30-pS K channel whose loss of function causes the reduced NaCl reabsorption in the TAL associated with Type 2 Bartter's syndrome. In contrast, the molecular basis of a functionally ROMK-related 70-pS K channel is still unclear. The aim of this study was to highlight new specific channel properties that may give insights on its molecular identity. Using the patch-clamp technique on the apical membrane of mouse split-open TAL tubules, we observed that 70-pS K channel activity, but not ROMK channel activity, increases with the internal Na+ and Cl- concentrations, with relative 50 % effective concentrations (EC50) and Hill coefficients (nH) of 40.6 mM (SD 1.65) and 2.4 (SD 0.28) for Na+, and of 29.3 mM (SD 2.35) and 2.2 (SD 0.39) for Cl-. Conversely, 70-pS K channel activity was inhibited by internal K+ with a relative EC50 of 64 mM (SD 13.5) and a nH of 3.5 (SD 2.3), and by internal NH4+ and Ca2+. The reevaluation of channel conductive properties revealed an actual inward conductance of ~ 170 pS, with multiple subconductance levels and an inward rectification, and a substantial permeability to NH4+ ( = 0.2). We conclude that the apical 70-pS K channel in TAL cells is a large-conductance Na+- and Cl--activated potassium channel functionally resembling a KNa1.1 channel and propose that ROMK determines its functional expression possibly at the level of channel protein synthesis or trafficking.

2.
Hum Mutat ; 41(4): 774-785, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31803959

RESUMO

Pathological missense mutations in CLCNKB gene give a wide spectrum of clinical phenotypes in Bartter syndrome type III patients. Molecular analysis of the mutated ClC-Kb channels can be helpful to classify the mutations according to their functional alteration. We investigated the functional consequences of nine mutations in the CLCNKB gene causing Bartter syndrome. We first established that all tested mutations lead to decreased ClC-Kb currents. Combining electrophysiological and biochemical methods in Xenopus laevis oocytes and in MDCKII cells, we identified three classes of mutations. One class is characterized by altered channel trafficking. p.A210V, p.P216L, p.G424R, and p.G437R are totally or partially retained in the endoplasmic reticulum. p.S218N is characterized by reduced channel insertion at the plasma membrane and altered pH-sensitivity; thus, it falls in the second class of mutations. Finally, we found a novel class of functionally inactivated mutants normally present at the plasma membrane. Indeed, we found that p.A204T alters the pH-sensitivity, p.A254V abolishes the calcium-sensitivity. p.G219C and p.G465R are probably partially inactive at the plasma membrane. In conclusion, most pathogenic mutants accumulate partly or totally in intracellular compartments, but some mutants are normally present at the membrane surface and simultaneously show a large range of altered channel gating properties.


Assuntos
Síndrome de Bartter/genética , Sítios de Ligação , Cálcio/metabolismo , Canais de Cloreto/química , Canais de Cloreto/genética , Mutação , Multimerização Proteica , Animais , Síndrome de Bartter/metabolismo , Linhagem Celular , Humanos , Oócitos/metabolismo , Ligação Proteica , Transporte Proteico , Xenopus
3.
Kidney Int ; 97(2): 304-315, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31870500

RESUMO

The kidneys excrete the daily acid load mainly by generating and excreting ammonia but the underlying molecular mechanisms are not fully understood. Here we evaluated the role of the inwardly rectifying potassium channel subunit Kir4.2 (Kcnj15 gene product) in this process. In mice, Kir4.2 was present exclusively at the basolateral membrane of proximal tubular cells and disruption of Kcnj15 caused a hyperchloremic metabolic acidosis associated with a reduced threshold for bicarbonate in the absence of a generalized proximal tubule dysfunction. Urinary ammonium excretion rates in Kcnj15- deleted mice were inappropriate to acidosis under basal and acid-loading conditions, and not related to a failure to acidify urine or a reduced expression of ammonia transporters in the collecting duct. In contrast, the expression of key proteins involved in ammonia metabolism and secretion by proximal cells, namely the glutamine transporter SNAT3, the phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase enzymes, and the sodium-proton exchanger NHE-3 was inappropriate in Kcnj15-deleted mice. Additionally, Kcnj15 deletion depolarized the proximal cell membrane by decreasing the barium-sensitive component of the potassium conductance and caused an intracellular alkalinization. Thus, the Kir4.2 potassium channel subunit is a newly recognized regulator of proximal ammonia metabolism. The kidney consequences of its loss of function in mice support the proposal for KCNJ15 as a molecular basis for human isolated proximal renal tubular acidosis.


Assuntos
Equilíbrio Ácido-Base , Amônia , Bicarbonatos , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Camundongos , Potássio , Canais de Potássio Corretores do Fluxo de Internalização/genética
4.
Compr Physiol ; 9(1): 301-342, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30549019

RESUMO

The many mechanisms governing NaCl absorption in the diverse parts of the renal tubule have been largely elucidated, although some of them, as neutral NaCl absorption across the cortical collecting duct or regulation through with-no-lysine (WNK) kinases have emerged only recently. Chloride channels, which are important players in these processes, at least in the distal nephron, are the focus of this review. Over the last 20-year period, experimental studies using molecular, electrophysiological, and physiological/functional approaches have deepened and renewed our views on chloride channels and their role in renal function. Two chloride channels of the ClC family, named as ClC-Ka and ClC-Kb in humans and ClC-K1 and ClC-K2 in other mammals, are preponderant and play complementary roles: ClC-K1/Ka is mainly involved in the building of the interstitial cortico-medullary concentration gradient, while ClC-K2/Kb participates in NaCl absorption in the thick ascending limb, distal convoluted tubule and the intercalated cells of the collecting duct. The two ClC-Ks might also be involved indirectly in proton secretion by type A intercalated cells. Other chloride channels in the kidneys include CFTR, TMEM16A, and probably volume-regulated LRRC8 chloride channels, whose function and molecular identity have not as yet been established. © 2019 American Physiological Society. Compr Physiol 9:301-342, 2019.


Assuntos
Canais de Cloreto/metabolismo , Rim/metabolismo , Cloreto de Sódio/metabolismo , Animais , Canais de Cloreto/química , Canais de Cloreto/genética , Humanos , Rim/fisiologia , Reabsorção Renal
5.
Sci Rep ; 7: 45407, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358046

RESUMO

Two-pore domain K2P K+ channels responsible for the background K+ conductance and the resting membrane potential, are also finely regulated by a variety of chemical, physical and physiological stimuli. Hormones and transmitters acting through Gq protein-coupled receptors (GqPCRs) modulate the activity of various K2P channels but the signalling involved has remained elusive, in particular whether dynamic regulation by membrane PI(4,5)P2, common among other classes of K+ channels, affects K2P channels is controversial. Here we show that K2P K+ channel TASK-2 requires PI(4,5)P2 for activity, a dependence that accounts for its run down in the absence of intracellular ATP and its full recovery by addition of exogenous PI(4,5)P2, its inhibition by low concentrations of polycation PI scavengers, and inhibition by PI(4,5)P2 depletion from the membrane. Comprehensive mutagenesis suggests that PI(4,5)P2 interaction with TASK-2 takes place at C-terminus where three basic aminoacids are identified as being part of a putative binding site.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Diglicerídeos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Mutagênese Sítio-Dirigida , Neomicina/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Subunidades Proteicas/metabolismo
6.
J Am Soc Nephrol ; 28(1): 209-217, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27335120

RESUMO

Chloride transport by the renal tubule is critical for blood pressure (BP), acid-base, and potassium homeostasis. Chloride uptake from the urinary fluid is mediated by various apical transporters, whereas basolateral chloride exit is thought to be mediated by ClC-Ka/K1 and ClC-Kb/K2, two chloride channels from the ClC family, or by KCl cotransporters from the SLC12 gene family. Nevertheless, the localization and role of ClC-K channels is not fully resolved. Because inactivating mutations in ClC-Kb/K2 cause Bartter syndrome, a disease that mimics the effects of the loop diuretic furosemide, ClC-Kb/K2 is assumed to have a critical role in salt handling by the thick ascending limb. To dissect the role of this channel in detail, we generated a mouse model with a targeted disruption of the murine ortholog ClC-K2. Mutant mice developed a Bartter syndrome phenotype, characterized by renal salt loss, marked hypokalemia, and metabolic alkalosis. Patch-clamp analysis of tubules isolated from knockout (KO) mice suggested that ClC-K2 is the main basolateral chloride channel in the thick ascending limb and in the aldosterone-sensitive distal nephron. Accordingly, ClC-K2 KO mice did not exhibit the natriuretic response to furosemide and exhibited a severely blunted response to thiazide. We conclude that ClC-Kb/K2 is critical for salt absorption not only by the thick ascending limb, but also by the distal convoluted tubule.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Canais de Cloreto/fisiologia , Néfrons/metabolismo , Cloreto de Sódio/metabolismo , Animais , Diuréticos/farmacologia , Furosemida/farmacologia , Camundongos , Camundongos Knockout , Néfrons/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio/farmacologia
7.
J Gen Physiol ; 148(3): 213-26, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27574292

RESUMO

ClC-K2, a member of the ClC family of Cl(-) channels and transporters, forms the major basolateral Cl(-) conductance in distal nephron epithelial cells and therefore plays a central role in renal Cl(-) absorption. However, its regulation remains largely unknown because of the fact that recombinant ClC-K2 has not yet been studied at the single-channel level. In the present study, we investigate the effects of voltage, pH, Cl(-), and Ca(2+) on native ClC-K2 in the basolateral membrane of intercalated cells from the mouse connecting tubule. The ∼10-pS channel shows a steep voltage dependence such that channel activity increases with membrane depolarization. Intracellular pH (pHi) and extracellular pH (pHo) differentially modulate the voltage dependence curve: alkaline pHi flattens the curve by causing an increase in activity at negative voltages, whereas alkaline pHo shifts the curve toward negative voltages. In addition, pHi, pHo, and extracellular Ca(2+) strongly increase activity, mainly because of an increase in the number of active channels with a comparatively minor effect on channel open probability. Furthermore, voltage alters both the number of active channels and their open probability, whereas intracellular Cl(-) has little influence. We propose that changes in the number of active channels correspond to them entering or leaving an inactivated state, whereas modulation of open probability corresponds to common gating by these channels. We suggest that pH, through the combined effects of pHi and pHo on ClC-K2, might be a key regulator of NaCl absorption and Cl(-)/HCO3 (-) exchange in type B intercalated cells.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Canais de Cloreto/metabolismo , Néfrons/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Cloretos/metabolismo , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Cloreto de Sódio/metabolismo
8.
EMBO Rep ; 14(12): 1143-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24157948

RESUMO

Mechanical forces associated with fluid flow and/or circumferential stretch are sensed by renal epithelial cells and contribute to both adaptive or disease states. Non-selective stretch-activated ion channels (SACs), characterized by a lack of inactivation and a remarkably slow deactivation, are active at the basolateral side of renal proximal convoluted tubules. Knockdown of Piezo1 strongly reduces SAC activity in proximal convoluted tubule epithelial cells. Similarly, overexpression of Polycystin-2 (PC2) or, to a greater extent its pathogenic mutant PC2-740X, impairs native SACs. Moreover, PC2 inhibits exogenous Piezo1 SAC activity. PC2 coimmunoprecipitates with Piezo1 and deletion of its N-terminal domain prevents both this interaction and inhibition of SAC activity. These findings indicate that renal SACs depend on Piezo1, but are critically conditioned by PC2.


Assuntos
Células Epiteliais/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Canais de Cátion TRPP/metabolismo , Potenciais de Ação , Animais , Sítios de Ligação , Células COS , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/fisiologia , Túbulos Renais/citologia , Mutação , Ligação Proteica , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPP/química , Canais de Cátion TRPP/genética
9.
Biochim Biophys Acta ; 1828(11): 2399-409, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23791703

RESUMO

Several Cl(-) channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl(-) absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl(-)>Br(-)>NO3(-)>I(-). Single-channel recordings revealed a unit conductance of ~40pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~-65mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~20pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~+25mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253-260).


Assuntos
Canais de Cloreto/metabolismo , Animais , Células HEK293 , Humanos , Túbulos Renais/metabolismo , Técnicas de Patch-Clamp , Proteínas Recombinantes/metabolismo , Xenopus laevis
10.
Am J Respir Crit Care Med ; 187(2): 170-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23220915

RESUMO

RATIONALE: Cystic fibrosis transmembrane conductance regulator (CFTR) protein is a chloride channel regulating fluid homeostasis at epithelial surfaces. Its loss of function induces hypohydration, mucus accumulation, and bacterial infections in CF and potentially other lung chronic diseases. OBJECTIVES: To test whether neutrophil elastase (NE) and neutrophil-mediated inflammation negatively impact CFTR structure and function, in vitro and in vivo. METHODS: Using an adenovirus-CFTR overexpression approach, we showed that NE degrades wild-type (WT)- and ΔF508-CFTR in vitro and WT-CFTR in mice through a new pathway involving the activation of intracellular calpains. MEASUREMENTS AND MAIN RESULTS: CFTR degradation triggered a loss of function, as measured in vitro by channel patch-clamp and in vivo by nasal potential recording in mice. Importantly, this mechanism was also shown to be operative in a Pseudomonas aeruginosa lung infection murine model, and was NE-dependent, because CFTR integrity was significantly protected in NE(-/-) mice compared with WT mice. CONCLUSIONS: These data provide a new mechanism and show for the first time a link between NE-calpains activation and CFTR loss of function in bacterial lung infections relevant to CF and to other chronic inflammatory lung conditions.


Assuntos
Calpaína/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Elastase de Leucócito/fisiologia , Animais , Calpaína/metabolismo , Canais de Cloreto/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Epitélio/fisiologia , Humanos , Elastase de Leucócito/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Pneumonia Bacteriana/etiologia , Pneumonia Bacteriana/fisiopatologia , Infecções por Pseudomonas/etiologia , Infecções por Pseudomonas/fisiopatologia
11.
Biochim Biophys Acta ; 1818(5): 1135-41, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22230350

RESUMO

Non-selective cation channels have been described in the basolateral membrane of the renal tubule, but little is known about functional channels on the apical side. Apical membranes of microdissected fragments of mouse cortical thick ascending limbs were searched for ion channels using the cell-free configuration of the patch-clamp technique. A cation channel with a linear current-voltage relationship (19pS) that was permeable both to monovalent cations [P(NH4)(1.7)>P(Na) (1.0)=P(K) (1.0)] and to Ca(2+) (P(Ca)/P(Na)≈0.3) was detected. Unlike the basolateral TRPM4 Ca(2+)-impermeable non-selective cation channel, this non-selective cation channel was insensitive to internal Ca(2+), pH and ATP. The channel was already active after patch excision, and its activity increased after reduced pressure was applied via the pipette. External gadolinium (10(-5)M) decreased the channel-open probability by 70% in outside-out patches, whereas external amiloride (10(-4)M) had no effect. Internal flufenamic acid (10(-4)M) inhibited the channel in inside-out patches. Its properties suggest that the current might be supported by the TRPM7 protein that is expressed in the loop of Henle. The conduction properties of the channel suggest that it could be involved in Ca(2+) signaling.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Alça do Néfron/metabolismo , Canais de Cátion TRPM/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Ácido Flufenâmico/farmacologia , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Masculino , Camundongos
12.
Proc Natl Acad Sci U S A ; 108(25): 10361-6, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21633011

RESUMO

The heteromeric inwardly rectifying Kir4.1/Kir5.1 K(+) channel underlies the basolateral K(+) conductance in the distal nephron and is extremely sensitive to inhibition by intracellular pH. The functional importance of Kir4.1/Kir5.1 in renal ion transport has recently been highlighted by mutations in the human Kir4.1 gene (KCNJ10) that result in seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME)/epilepsy, ataxia, sensorineural deafness, and renal tubulopathy (EAST) syndrome, a complex disorder that includes salt wasting and hypokalemic alkalosis. Here, we investigated the role of the Kir5.1 subunit in mice with a targeted disruption of the Kir5.1 gene (Kcnj16). The Kir5.1(-/-) mice displayed hypokalemic, hyperchloremic metabolic acidosis with hypercalciuria. The short-term responses to hydrochlorothiazide, an inhibitor of ion transport in the distal convoluted tubule (DCT), were also exaggerated, indicating excessive renal Na(+) absorption in this segment. Furthermore, chronic treatment with hydrochlorothiazide normalized urinary excretion of Na(+) and Ca(2+), and abolished acidosis in Kir5.1(-/-) mice. Finally, in contrast to WT mice, electrophysiological recording of K(+) channels in the DCT basolateral membrane of Kir5.1(-/-) mice revealed that, even though Kir5.1 is absent, there is an increased K(+) conductance caused by the decreased pH sensitivity of the remaining homomeric Kir4.1 channels. In conclusion, disruption of Kcnj16 induces a severe renal phenotype that, apart from hypokalemia, is the opposite of the phenotype seen in SeSAME/EAST syndrome. These results highlight the important role that Kir5.1 plays as a pH-sensitive regulator of salt transport in the DCT, and the implication of these results for the correct genetic diagnosis of renal tubulopathies is discussed.


Assuntos
Túbulos Renais/fisiologia , Túbulos Renais/fisiopatologia , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Acidose/genética , Acidose/fisiopatologia , Amilorida/farmacologia , Animais , Diuréticos/farmacologia , Furosemida/farmacologia , Humanos , Hidroclorotiazida/farmacologia , Hipopotassemia/genética , Hipopotassemia/fisiopatologia , Túbulos Renais/citologia , Túbulos Renais/efeitos dos fármacos , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Bloqueadores dos Canais de Sódio/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Síndrome , Canal Kir5.1
13.
Am J Physiol Renal Physiol ; 294(6): F1398-407, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18367659

RESUMO

K(+) channels in the basolateral membrane of mouse cortical collecting duct (CCD) principal cells were identified with patch-clamp technique, real-time PCR, and immunohistochemistry. In cell-attached membrane patches, three K(+) channels with conductances of approximately 75, 40, and 20 pS were observed, but the K(+) channel with the intermediate conductance (40 pS) predominated. In inside-out membrane patches exposed to an Mg(2+)-free medium, the current-voltage relationship of the intermediate-conductance channel was linear with a conductance of 38 pS. Addition of 1.3 mM internal Mg(2+) had no influence on the inward conductance (G(in) = 35 pS) but reduced outward conductance (G(out)) to 13 pS, yielding a G(in)/G(out) of 3.2. The polycation spermine (6 x 10(-7) M) reduced its activity on inside-out membrane patches by 50% at a clamp potential of 60 mV. Channel activity was also dependent on intracellular pH (pH(i)): a sigmoid relationship between pH(i) and channel normalized current (NP(o)) was observed with a pK of 7.24 and a Hill coefficient of 1.7. By real-time PCR on CCD extracts, inwardly rectifying K(+) (Kir)4.1 and Kir5.1, but not Kir4.2, mRNAs were detected. Kir4.1 and Kir5.1 proteins cellularly colocalized with aquaporin 2 (AQP2), a specific marker of CCD principal cells, while AQP2-negative cells (i.e., intercalated cells) showed no staining. Dietary K(+) had no influence on the properties of the intermediate-conductance channel, but a Na(+)-depleted diet increased its open probability by approximately 25%. We conclude that the Kir4.1/Kir5.1 channel is a major component of the K(+) conductance in the basolateral membrane of mouse CCD principal cells.


Assuntos
Polaridade Celular/fisiologia , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Animais , Clonagem Molecular , Imuno-Histoquímica , Técnicas In Vitro , Córtex Renal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Biológicos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potássio na Dieta/farmacocinética , RNA Mensageiro/metabolismo , Sódio na Dieta/farmacocinética , Canal Kir5.1
14.
J Gen Physiol ; 127(2): 205-15, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16446508

RESUMO

This study investigates the presence and properties of Na+-activated K+ (K(Na)) channels in epithelial renal cells. Using real-time PCR on mouse microdissected nephron segments, we show that Slo2.2 mRNA, which encodes for the K(Na) channels of excitable cells, is expressed in the medullary and cortical thick ascending limbs of Henle's loop, but not in the other parts of the nephron. Patch-clamp analysis revealed the presence of a high conductance K+ channel in the basolateral membrane of both the medullary and cortical thick ascending limbs. This channel was highly K+ selective (P(K)/P(Na) approximately 20), its conductance ranged from 140 to 180 pS with subconductance levels, and its current/voltage relationship displayed intermediate, Na+-dependent, inward rectification. Internal Na+ and Cl- activated the channel with 50% effective concentrations (EC50) and Hill coefficients (nH) of 30 +/- 1 mM and 3.9 +/- 0.5 for internal Na+, and 35 +/- 10 mM and 1.3 +/- 0.25 for internal Cl-. Channel activity was unaltered by internal ATP (2 mM) and by internal pH, but clearly decreased when internal free Ca2+ concentration increased. This is the first demonstration of the presence in the epithelial cell membrane of a functional, Na+-activated, large-conductance K+ channel that closely resembles native K(Na) channels of excitable cells. This Slo2.2 type, Na+- and Cl--activated K+ channel is primarily located in the thick ascending limb, a major renal site of transcellular NaCl reabsorption.


Assuntos
Alça do Néfron/química , Canais de Potássio/análise , Canais de Potássio/fisiologia , Urotélio/química , Trifosfato de Adenosina/fisiologia , Animais , Membrana Celular/química , Membrana Celular/fisiologia , Cloretos/fisiologia , Células Epiteliais/química , Células Epiteliais/fisiologia , Concentração de Íons de Hidrogênio , Canais de Potássio Ativados por Cálcio de Condutância Alta/análise , Canais de Potássio Ativados por Cálcio de Condutância Alta/química , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Alça do Néfron/citologia , Alça do Néfron/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos , Proteínas do Tecido Nervoso , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio Ativados por Sódio , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/fisiologia , Urotélio/fisiologia
15.
Am J Physiol Renal Physiol ; 290(6): F1421-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16403836

RESUMO

Using the patch-clamp technique, we investigated Cl- channels on the basolateral membrane of the connecting tubule (CNT) and cortical collecting duct (CCD). We found a approximately 10-pS channel in CNT cell-attached patches. Substitution of sodium gluconate for NaCl in the pipette shifted the reversal potential by +25 mV, whereas N-methyl-D-gluconate chloride had no effect, indicating anion selectivity. On inside-out patches, we determined a selectivity sequence of Cl- > Br- approximately NO3(-) > F-, which is compatible with that of ClC-K2, a Cl- channel in the distal nephron. In addition, the number of open channels (NP(o)) measured in cell-attached patches was significantly increased when Ca2+ concentration or pH in the pipette was increased, which is another characteristic of ClC-K. These findings suggest that the basis for this channel is ClC-K2. A similar Cl- channel was found in CCD patches. Because CNT and CCD are heterogeneous tissues, we studied the cellular distribution of the Cl- channel using recording conditions (KCl-rich solution in the pipette) that allowed us to detect simultaneously Cl- channels and inwardly rectifying K+ channels. We detected Cl- channels alone in 45% and 42% and K+ channels alone in 51% and 58% of CNT and CCD patches, respectively. Cl- and K+ channels were recorded simultaneously from two patches (4% of patches) in the CNT and from none of the patches in the CCD. This indicates that Cl- and K+ channels are located in different cell types, which we suggest may be the intercalated cells and principal cells, respectively.


Assuntos
Canais de Cloreto/análise , Túbulos Renais Coletores/química , Túbulos Renais/química , Animais , Cálcio/análise , Canais de Cloreto/fisiologia , Condutividade Elétrica , Gluconatos , Concentração de Íons de Hidrogênio , Interneurônios/química , Masculino , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio/análise , Cloreto de Sódio
16.
J Am Soc Nephrol ; 16(12): 3642-50, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16267158

RESUMO

Edema and ascites in nephrotic syndrome mainly result from increased Na+ reabsorption along connecting tubules and cortical collecting ducts (CCD). In puromycin aminonucleoside (PAN)-induced nephrosis, increased Na+ reabsorption is associated with increased activity of the epithelial sodium channel (ENaC) and Na+,K+-ATPase, two targets of aldosterone. Because plasma aldosterone increases in PAN-nephrotic rats, the aldosterone dependence of ENaC activation in PAN nephrosis was investigated. For this purpose, (1) the mechanism of ENaC activation was compared in nephrotic and sodium-depleted rats, and (2) ENaC activity in PAN-nephrotic rats was evaluated in the absence of hyperaldosteronemia. The mechanism of ENaC activation was similar in CCD from nephrotic and sodium-depleted rats, as demonstrated by (1) increased number of active ENaC evaluated by patch clamp, (2) recruitment of ENaC to the apical membrane determined by immunohistochemistry, (3) shift in the electrophoretic profile of gamma-ENaC, and (4) increased abundance of beta-ENaC mRNA. Corticosteroid clamp fully prevented all PAN-induced changes in ENaC but did not alter the development of a full-blown nephrotic syndrome with massive albuminuria, amiloride-sensitive sodium retention, induction of CCD Na+,K+-ATPase, and ascites. It is concluded that in PAN-nephrosis, (1) ENaC activation in CCD is secondary to hyperaldosteronemia, (2) sodium retention and induction of Na+,K+-ATPase in CCD are independent of hyperaldosteronemia, and (3) ENaC is not necessarily limiting for sodium reabsorption in the distal nephron.


Assuntos
Hiperaldosteronismo/fisiopatologia , Hipernatremia/prevenção & controle , Nefrose/fisiopatologia , Canais de Sódio/metabolismo , Animais , Transporte Biológico/fisiologia , Canais Epiteliais de Sódio , Imunofluorescência , Immunoblotting , Masculino , Nefrose/patologia , Probabilidade , Puromicina , Ratos , Ratos Sprague-Dawley , Valores de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo
17.
Nephron Physiol ; 99(2): p64-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15627805

RESUMO

Chloride channels located on the basolateral membrane are known to be involved in chloride absorption in several parts of the renal tubule, and particularly in the thick ascending limb and distal convoluted tubule. The data available suggest that the ClC-K channels play the major role in this process. We provide here a description of the electrophysiological properties of these channels, still very incomplete at this stage, and we attempt to compare ClC-Ks to three chloride channels that we have identified in the basolateral membrane of microdissected fragments of the mouse renal tubule using the patch-clamp technique. Based on anion selectivity and dependence on external pH and calcium shown by the ClC-Ks, we propose candidate ClC-K1 and ClC-K2 in native tissue. We also discuss the possibility that chloride channels that do not belong to the ClC family may also be involved in the absorption of chloride across the cortical thick ascending limb.


Assuntos
Cloro/metabolismo , Ativação do Canal Iônico/fisiologia , Túbulos Renais Distais/fisiologia , Animais , Canais de Cloreto , Humanos , Camundongos
18.
Am J Physiol Renal Physiol ; 287(6): F1233-43, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15280163

RESUMO

The distal convoluted tubule (DCT) is a heterogeneous segment subdivided into early (DCT1) and late (DCT2) parts, depending on the distribution of various transport systems. We do not have an exhaustive picture of the Cl(-) channels on the basolateral side: the presence of ClC-K2 channels is generally accepted, whereas that of ClC-K1 remains controversial. We used here single-cell RT-PCR and patch clamp to probe Cl(-) channel heterogeneity in microdissected mouse DCT at the molecular and functional levels. Our findings show that 63% of the DCT cells express ClC-K2 mRNA, either alone (type 1 cells: 47 and 23% in DCT1 and DCT2, respectively), or combined with ClC-K1, mostly in DCT2 (type 2 cells: 33%), but 37% of DCT1 and DCT2 cells do not express any ClC-K. Patch-clamp experiments revealed that a Cl(-) channel, with 9-pS conductance and Cl(-) > NO(3)(-) = Br(-) anion selectivity sequence, is present in the DCT1 and DCT2 basolateral membranes (87 and 71% of the patches, respectively). This dominant channel is likely to be ClC-K2 in type 1 cells. In type 2 cells, it could be ClC-K2 and/or ClC-K1 homodimers, but also ClC-K1/ClC-K2 heterodimers, or a mixture of all combinations. A second, distinct Cl(-) channel (13% of DCT1 patches, 29% of DCT2 patches) also displayed 9-pS conductance but had a completely different anion selectivity (I(-) > NO(3)(-) > Br(-) > Cl(-)), which was not compatible with that of the ClC-Ks. This indicates that a Cl(-) channel that is unlikely to belong to the ClC family may also be involved in Cl(-) absorption in the DCT2.


Assuntos
Canais de Cloreto/análise , Túbulos Renais Distais/química , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Absorção , Animais , Brometos/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/fisiologia , Cloretos/metabolismo , Condutividade Elétrica , Expressão Gênica , Concentração de Íons de Hidrogênio , Iodetos/metabolismo , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Nitratos/metabolismo , RNA Mensageiro/análise
19.
J Gen Physiol ; 121(4): 287-300, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12668733

RESUMO

The distal-convoluted tubule (DCT) of the kidney absorbs NaCl mainly via an Na+-Cl- cotransporter located at the apical membrane, and Na+, K+ ATPase at the basolateral side. Cl- transport across the basolateral membrane is thought to be conductive, but the corresponding channels have not yet been characterized. In the present study, we investigated Cl- channels on microdissected mouse DCTs using the patch-clamp technique. A channel of approximately 9 pS was found in 50% of cell-attached patches showing anionic selectivity. The NPo in cell-attached patches was not modified when tubules were preincubated in the presence of 10-5 M forskolin, but the channel was inhibited by phorbol ester (10-6 M). In addition, NPo was significantly elevated when the calcium in the pipette was increased from 0 to 5 mM (NPo increased threefold), or pH increased from 6.4 to 8.0 (NPo increased 15-fold). Selectivity experiments conducted on inside-out patches showed that the Na+ to Cl- relative permeability was 0.09, and the anion selectivity sequence Cl(-)--I(-) > Br(-)--NO3(-) > F(-). Intracellular NPPB (10-4 M) and DPC (10-3 M) blocked the channel by 65% and 80%, respectively. The channel was inhibited at acid intracellular pH, but intracellular ATP and PKA had no effect. ClC-K Cl- channels are characterized by their sensitivity to the external calcium and to pH. Since immunohistochemical data indicates that ClC-K2, and perhaps ClC-K1, are present on the DCT basolateral membrane, we suggest that the channel detected in this study may belong to this subfamily of the ClC channel family.


Assuntos
Membrana Celular/fisiologia , Canais de Cloreto/classificação , Canais de Cloreto/fisiologia , Potenciais da Membrana/fisiologia , Animais , Cálcio/metabolismo , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Canais de Cloreto/química , Colforsina/farmacologia , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Túbulos Renais Distais , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Proteína Quinase C/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
20.
Biochem J ; 370(Pt 1): 185-93, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12435274

RESUMO

It has been suggested that the inappropriate sequestration of weak-base chemotherapeutic drugs in acidic vesicles by multidrug-resistance (MDR) cells contributes to the mechanisms of drug resistance. The function of the acidic lysosomes can be altered in MDR cells, and so we investigated the effects of lysosomotropic agents on the secretion of lysosomal enzymes and on the intracellular distribution of the weak-base anthracycline daunomycin in drug-resistant renal proximal tubule PKSV-PR(col50) cells and their drug-sensitive PKSV-PR cell counterparts. Imaging studies using pH-dependent lysosomotropic dyes revealed that drug-sensitive and drug-resistant cells exhibited a similar acidic lysosomal pH (around 5.6-5.7), but that PKSV-PR(col50) cells contained more acidic lysosomes and secreted more of the lysosomal enzymes N -acetyl-beta-hexosaminidase and beta-glucuronidase than their parent PKSV-PR cells. Concanamycin A (CCM A), a potent inhibitor of the vacuolar H(+)-ATPase, but not the P-glycoprotein modulator verapamil, stimulated the secretion of N -acetyl-beta-hexosaminidase in both drug-sensitive and drug-resistant cells. Fluorescent studies and Percoll density gradient fractionation studies revealed that daunomycin accumulated predominantly in the lysosomes of PKSV-PR(col50) cells, whereas in PKSV-PR cells the drug was distributed evenly throughout the nucleo-cytoplasmic compartments. CCM A did not impair the cellular efflux of daunomycin, but induced the rapid nucleo-cytoplasmic redistribution of the drug in PKSV-PR(col50) cells. In addition, CCM A and bafilomycin A1 almost completely restored the sensitivity of these drug-resistant cells to daunomycin, doxorubicin and epirubicin. These findings indicate that lysosomotropic agents that impair the acidic-pH-dependent accumulation of weak-base chemotherapeutic drugs may reverse anthracycline resistance in MDR cells with an expanded acidic lysosomal compartment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Daunorrubicina/metabolismo , Inibidores Enzimáticos/farmacologia , Rim/efeitos dos fármacos , Lisossomos/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Animais , Resistência a Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Citometria de Fluxo , Concentração de Íons de Hidrogênio , Rim/citologia , Rim/enzimologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...