Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 66(1): e2100670, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806294

RESUMO

Polyphenols have attracted huge interest among researchers of various disciplines because of their numerous biological activities, such as antioxidative, antiinflammatory, antiapoptotic, cancer chemopreventive, anticarcinogenic, and antimicrobial properties, and their promising applications in many fields, mainly in the medical, cosmetics, dietary supplement and food industries. In this review, the latest scientific findings in the research on polyphenols interaction with the microbiome and mitochondria, their metabolism and health beneficial effects, their involvement in cognitive diseases and obesity development, as well as some innovations in their analysis, extraction methods, development of cosmetic formulations and functional food are summarized based on the papers presented at the 13th World Congress on Polyphenol Applications. Future implications of polyphenols in disease prevention and their strategic use as prophylactic measures are specifically addressed. Polyphenols may play a key role in our tomorrow´s food and nutrition to prevent many diseases.


Assuntos
Microbioma Gastrointestinal , Microbiota , Antioxidantes/farmacologia , Alimento Funcional , Polifenóis/metabolismo , Polifenóis/farmacologia
2.
Environ Sci Technol ; 54(11): 6741-6750, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32352767

RESUMO

The response in metal concentrations and isotopic composition to variations in photosynthetic activity of aquatic micro-organisms is crucially important for understanding the environmental controls on metal fluxes and isotope excursions. Here we studied the impacts of two successive diel cycles on physicochemical parameters, Cu and Zn concentrations, and isotopic composition in solution in the presence of mature phototrophic biofilm in a rotating annular bioreactor. The diel cycles induced fluctuations in temperature, pH, and dissolved oxygen concentration following the variation in the photosynthesis activity of the biofilm. Diel variations in metal concentrations were primarily related to the pH variation, with an increase in metal concentration in solution related to a pH decrease. For both metals, δ(66Zn) and δ(65Cu) in solution exhibited complex but reproducible diel cycles. Diel variations in photosynthetic activity led to alternatively positive and negative isotope fractionation, producing the sorption of light Zn (Δ(66Znsorbed-solution) = -0.1 ± 0.06‰) and heavy Cu isotopes (Δ(65Cusorbed-solution) = +0.17 ± 0.06‰) during the day at high pH and the excretion of lighter Zn isotopes (-0.4‰ < Δ(66Znexcreted-biofilm) < +0.14‰) and heavy Cu isotopes (Δ(65Cuexcreted-biofilm) = +0.7 ± 0.3‰) during the night at lower pH. We interpreted Zn and Cu diel cycles as a combination of a desorption of exopolymeric substance-metal complexes and a small active efflux during the night with adsorption and incorporation via an active uptake during the day. The hysteresis of metal concentration in solution over the diel cycle suggested the more important role of uptake compared to desorption and efflux from the biofilm. The phototrophic biofilm presents a non-negligible highly labile metal pool with important potential for contrasting isotopic fractionation at the diel scale.


Assuntos
Cobre , Zinco , Biofilmes , Isótopos , Compostos Orgânicos
3.
Diseases ; 8(2)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326509

RESUMO

Fecal Microbiota Transplantation (FMT) is suggested as an efficacious therapeutic strategy for restoring intestinal microbial balance, and thus for treating disease associated with alteration of gut microbiota. FMT consists of the administration of fresh or frozen fecal microorganisms from a healthy donor into the intestinal tract of diseased patients. At this time, in according to healthcare authorities, FMT is mainly used to treat recurrent Clostridium difficile. Despite the existence of a few existing stool banks worldwide and many studies of the FMT, there is no standard method for producing material for FMT, and there are a multitude of factors that can vary between the institutions. The main constraints for the therapeutic uses of FMT are safety concerns and acceptability. Technical and logistical issues arise when establishing such a non-standardized treatment into clinical practice with safety and proper governance. In this context, our manuscript describes a process of donor safety screening for FMT compiling clinical and biological examinations, questionnaires and interviews of donors. The potential risk of transmission of SARS-CoV-2 virus by the use of fecal microbiota for transplantation must be taken urgently into consideration. We discuss a standardized procedure of collection, preparation and cryopreservation of fecal samples through to the administration of material to patients, and explore the risks and limits of this method of FMT. The future success of medicine employing microbiota transplantation will be tightly related to its modulation and manipulation to combat dysbiosis. To achieve this goal, standard and strict methods need to be established before performing any type of FMT.

4.
Environ Pollut ; 256: 113515, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31706760

RESUMO

Cerium oxide (CeO2) nanoparticles are used as in-fuel catalysts and in manufacturing processes, creating a potential for release to aquatic environments. Exposures at 1 and 10 µg/L CeO2-nanoparticles were made to assess effects during the development of river biofilm communities. Scanning transmission x-ray microscopy (STXM) indicated extensive sorption of nanoparticles to the community and co-localization with lipid moieties. Following 8 weeks of development, polycarbonate coupons were removed from the reactors and used for molecular analyses, denaturing gradient gel electrophoresis analysis (DGGE-16S rRNA) and 16S rRNA amplicon sequencing. Microscopic imaging of the biofilm communities (bacterial, photosynthetic biomass, exopolymer composition, thickness, protozoan numbers), as well as carbon substrate utilization fingerprinting was performed. There was a trend toward reduced photosynthetic biomass, but no significant effects of CeO2 exposure were found on photosynthetic and bacterial biomass or biofilm thickness. Sole carbon source utilization analyses indicated increased utilization of 10 carbon sources in the carbohydrate, carboxylic acid and amino acids categories related to CeO2 exposures; however, predominantly, no significant effects (p < 0.05) were detected. Measures of microbial diversity, lectin binding affinities of exopolymeric substances and results of DGGE analyses, indicated significant changes to community composition (p < 0.05) with CeO2 exposure. Increased binding of the lectin Canavalia ensiformis was observed, consistent with changes in bacterial-associated polymers. Whereas, no significant changes were observed in binding to residues associated with algal and cyanobacterial exopolymers. 16S rRNA amplicon sequencing of community DNA indicated changes in diversity and shifts in community composition; however, these did not trend with increasing CeO2 exposure. Counting of protozoans in the biofilm communities indicated no significant effects on this trophic level. Thus, based on biomass and functional measures, CeO2 nanoparticles did not appear to have significant effects; however, there was evidence of selection pressure resulting in significant changes in microbial community composition.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cério/toxicidade , Nanopartículas/toxicidade , Rios/microbiologia , Biomassa , Cianobactérias/metabolismo , Monitoramento Ambiental , RNA Ribossômico 16S
5.
Microorganisms ; 7(9)2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31540235

RESUMO

Microalgae biofilms have been proposed as an alternative to suspended cultures in commercial and biotechnological fields. However, little is known about their architecture that may strongly impact biofilm behavior, bioprocess stability, and productivity. In order to unravel the architecture of microalgae biofilms, four species of commercial interest were cultivated in microplates and characterized using a combination of confocal laser scanning microscopy and FTIR spectroscopy. In all the species, the biofilm biovolume and thickness increased over time and reached a plateau after seven days; however, the final biomass reached was very different. The roughness decreased during maturation, reflecting cell division and voids filling. The extracellular polymeric substances content of the matrix remained constant in some species, and increased over time in some others. Vertical profiles showed that young biofilms presented a maximum cell density at 20 µm above the substratum co-localized with matrix components. In mature biofilms, the maximum density of cells moved at a greater distance from the substratum (30-40 µm), whereas the maximum coverage of matrix components remained in a deeper layer. Carbohydrates and lipids were the main macromolecules changing during biofilm maturation. Our results revealed that the architecture of microalgae biofilms is species-specific. However, time similarly affects the structural and biochemical parameters.

6.
Environ Toxicol Chem ; 38(11): 2414-2425, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31365141

RESUMO

Studies of the South Saskatchewan River confirmed that N,N-diethyl-m-toluamide (DEET) is ubiquitous at 10 to 20 ng/L, whereas in effluent-dominated Wascana Creek, levels of 100 to 450 ng/L were observed. Effects of DEET exposure were assessed in microbial communities using a wide variety of measures. Communities developed in rotating annular reactors with either 100 or 500 ng/L DEET, verified using gas chromatography-mass spectrometry analyses. Microscale analyses indicated that both DEET concentrations resulted in significant (p < 0.05) declines in photosynthetic biomass, whereas bacterial biomass was unaffected. There was no detectable effect of DEET on the levels of chlorophyll a. However, pigment analyses indicated substantial shifts in algal-cyanobacterial community structure, with reductions of green algae and some cyanobacterial groups at 500 ng/L DEET. Protozoan/micrometazoan grazers increased in communities exposed to 500 ng/L, but not 100 ng/L, DEET. Based on thymidine incorporation or utilization of carbon sources, DEET had no significant effects on metabolic activities. Fluorescent lectin-binding analyses showed significant (p < 0.05) changes in glycoconjugate composition at both DEET concentrations, consistent with altered community structure. Principal component cluster analyses of denaturing gradient gel electrophoresis indicated that DEET exposure at either concentration significantly changed the bacterial community (p < 0.05). Analyses based on 16S ribosomal RNA of community composition confirmed changes with DEET exposure, increasing detectable beta-proteobacteria, whereas actinobacteria and acidimicrobia became undetectable. Further, cyanobacteria in the subclass Oscillatoriophycideae were similarly not detected. Thus, DEET can alter microbial community structure and function, supporting the need for further evaluation of its effects in aquatic habitats. Environ Toxicol Chem 2019;38:2414-2425. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
DEET/toxicidade , Exposição Ambiental/análise , Microbiota/efeitos dos fármacos , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , Biofilmes/efeitos dos fármacos , Biomassa , Carbono/metabolismo , Clorofila A/metabolismo , Clorófitas/efeitos dos fármacos , Cianobactérias/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Fotossíntese/efeitos dos fármacos , Análise de Componente Principal , RNA Ribossômico 16S/genética , Saskatchewan
7.
Med Sci (Basel) ; 6(4)2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30301167

RESUMO

An imbalance of bacterial quantity and quality of gut microbiota has been linked to several pathologies. New strategies of microbiota manipulation have been developed such as fecal microbiota transplantation (FMT); the use of pre/probiotics; an appropriate diet; and phage therapy. The presence of bacteriophages has been largely underestimated and their presence is a relevant component for the microbiome equilibrium. As a promising treatment, phage therapy has been extensively used in Eastern Europe to reduce pathogenic bacteria and has arisen as a new method to modulate microbiota diversity. Phages have been selected and "trained" to infect a wide spectrum of bacteria or tailored to infect specific antibiotic resistant bacteria present in patients. The new development of genetically modified phages may be an efficient tool to treat the gut microbiota dysbiosis associated with different pathologies and increased production of bacterial metabolites and subsequently decrease systemic low-grade chronic inflammation associated with chronic diseases. Microbiota quality and mitochondria dynamics can be remodulated and manipulated by phages to restore the equilibrium and homeostasis of the system. Our aim is to highlight the great interest for phages not only to eliminate and control pathogenic bacterial infection but also in the near future to modulate the microbiota by adding new functions to selected bacteria species and rebalance the dynamic among phages and bacteria. The challenge for the medicine of tomorrow is to re-think and redesign strategies differently and far from our traditional thinking.

8.
Harmful Algae ; 70: 1-22, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29169565

RESUMO

Nutrient enrichment is a significant global-scale driver of change in coastal waters, contributing to an array of problems in coastal ecosystems. The St. Lucie Estuary (SLE) in southeast Florida has received national attention as a result of its poor water quality (elevated nutrient concentrations and fecal bacteria counts), recurring toxic Microcystis aeruginosa blooms, and its proximity to the northern boundary of tropical coral species in the United States. The SLE has an artificially large watershed comprised of a network of drainage canals, one of which (C-44) is used to lower the water level in Lake Okeechobee. Public attention has primarily been directed at nutrient inputs originating from the lake, but recent concern over the importance of local watershed impacts prompted a one-year watershed study designed to investigate the interactions between on-site sewage treatment and disposal systems (OSTDS or septic systems), groundwaters, and surface waters in the SLE and nearshore reefs. Results provided multiple lines of evidence of OSTDS contamination of the SLE and its watershed: 1) dissolved nutrients in groundwaters and surface waters were most concentrated adjacent to two older (pre-1978) residential communities and the primary canals, and 2) sucralose was present in groundwater at residential sites (up to 32.0µg/L) and adjacent surface waters (up to 5.5µg/L), and 3) δ15N values in surface water (+7.5 o/oo), macroalgae (+4.4 o/oo) and phytoplankton (+5.0 o/oo) were within the published range (>+3 o/oo) for sewage N and similar to values in OSTDS-contaminated groundwaters. Measured δ15N values in M. aeruginosa became increasingly enriched during transport from the C-44 canal (∼5.8 o/oo) into the mid-estuary (∼8.0 o/oo), indicating uptake and growth on sewage N sources within the urbanized estuary. Consequently, there is a need to reduce N and P loading, as well as fecal loading, from the SLE watershed via septic-to-sewer conversion projects and to minimize the frequency and intensity of the releases from Lake Okeechobee to the SLE via additional water storage north of the lake. These enhancements would improve water quality in both the SLE and Lake Okeechobee, reduce the occurrence of toxic harmful algal blooms in the linked systems, and improve overall ecosystem health in the SLE and downstream reefs.


Assuntos
Água Subterrânea/microbiologia , Proliferação Nociva de Algas , Lagos/microbiologia , Microcystis/crescimento & desenvolvimento , Ecossistema , Estuários , Florida , Água Subterrânea/análise , Lagos/análise , Microcystis/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Nutrientes/análise , Nutrientes/metabolismo , Fósforo/análise , Fósforo/metabolismo , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Poluição da Água/análise , Qualidade da Água
9.
Int J Syst Evol Microbiol ; 60(Pt 8): 1921-1937, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19783607

RESUMO

We used the information from a set of concatenated sequences from four genes (recA, gyrB, dnaN and gltX) to investigate the phylogeny of the genera Photorhabdus and Xenorhabdus (entomopathogenic bacteria associated with nematodes of the genera Heterorhabditis and Steinernema, respectively). The robustness of the phylogenetic tree obtained by this multigene approach was significantly better than that of the tree obtained by a single gene approach. The comparison of the topologies of single gene phylogenetic trees highlighted discrepancies which have implications for the classification of strains and new isolates; in particular, we propose the transfer of Photorhabdus luminescens subsp. thracensis to Photorhabdus temperata subsp. thracensis comb. nov. (type strain CIP 108426T =DSM 15199T). We found that, within the genus Xenorhabdus, strains or isolates that shared less than 97 % nucleotide identity (NI), calculated on the concatenated sequences of the four gene fragments (recA, gyrB, dnaN and gltX) encompassing 3395 nucleotides, did not belong to the same species. Thus, at the 97% NI cutoff, we confirm the current 20 species of the genus Xenorhabdus and propose the description of a novel species, Xenorhabdus vietnamensis sp. nov. (type strain VN01T =CIP 109945T =DSM 22392T). Within each of the three current species of the genus Photorhabdus, P. asymbiotica, P. luminescens and P. temperata, strains or isolates which shared less than 97% NI did not belong to the same subspecies. Comparisons of the four gene fragments plus the rplB gene fragment analysed separately led us to propose four novel subspecies: Photorhabdus luminescens subsp. caribbeanensis subsp. nov. (type strain HG29T =CIP 109949T =DSM 22391T), P. luminescens subsp. hainanensis subsp. nov. (type strain C8404T = CIP 109946T =DSM 22397T), P. temperata subsp. khanii subsp. nov. (type strain C1T =NC19(T) =CIP 109947T =DSM 3369T), and P. temperata subsp. tasmaniensis subsp. nov. (type strain T327T =CIP 109948T =DSM 22387T).


Assuntos
Proteínas de Bactérias/genética , Nematoides/microbiologia , Photorhabdus/classificação , Photorhabdus/isolamento & purificação , Filogenia , Xenorhabdus/classificação , Xenorhabdus/isolamento & purificação , Animais , DNA Bacteriano/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Photorhabdus/genética , RNA Ribossômico 16S/genética , Xenorhabdus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...