Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 41(3): 284-295, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36929117

RESUMO

In the last 2 years, different pharmacological agents have been indicated as potential inhibitors of SARS-CoV-2 in vitro. Specifically, drugs termed as functional inhibitors of acid sphingomyelinase (FIASMAs) have proved to inhibit the SARS-CoV-2 replication using different types of cells. Those therapeutic agents share several chemical structure characteristics and some well-known representatives are fluoxetine, escitalopram, fluvoxamine, and others. Most of the FIASMAs are primarily used as effective therapeutic agents to treat different pathologies, therefore, they are natural drug candidates for repositioning strategy. In this review, we summarize the two main proposed mechanisms mediating acid sphingomyelinase (ASM) inhibition and how they can explain the inhibition of SARS-CoV-2 replication by FIASMAs. The first mechanism implies a disruption in the lysosomal pH fall as the endosome-lysosome moves toward the interior of the cell. In fact, changes in cholesterol levels in endosome-lysosome membranes, which are associated with ASM inhibition is thought to be mediated by lysosomal proton pump (ATP-ase) inactivation. The second mechanism involves the formation of an extracellular ceramide-rich domain, which is blocked by FIASMAs. The ceramide-rich domains are believed to facilitate the SARS-CoV-2 entrance into the host cells.


Assuntos
COVID-19 , SARS-CoV-2 , Esfingomielina Fosfodiesterase , Humanos , Ceramidas/metabolismo , Fluoxetina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA