Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 7(11): e541, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38028646

RESUMO

Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.

2.
Plant Direct ; 6(9): e443, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36091877

RESUMO

Calcium oxalate raphide crystals are found in bundles in intravacuolar membrane chambers of specialized idioblasts cells of most plant families. Aroid raphides are proposed to cause acridity in crops such as taro (Colocasia esculenta (L.) Schott). Acridity is irritation that causes itchiness and pain when raw/insufficiently cooked tissues are eaten. Since raphides do not always cause acridity and since acridity can be inactivated by cooking and/or protease treatment, it is possible that a toxin or allergen-like compound is associated with the crystals. Using two-dimensional (2D) gel electrophoresis and mass spectrometry (MS) peptide sequencing of selected peptides from purified raphides and taro apex transcriptome sequencing, we showed the presence on the raphides of peptides normally associated with mitochrondria (ATP synthase), chloroplasts (chaperonin ~60 kDa), cytoplasm (actin, profilin), and vacuole (V-type ATPase) that indicates a multistage biocrystallation process ending with possible invagination of the tonoplast and addition of mucilage that may be derived from the Golgi. Actin might play a crucial role in the generation of the needle-like raphides. One of the five raphide profilins genes was highly expressed in the apex and had a 17-amino acid insert that significantly increased that profilin's antigenic epitope peak. A second profilin had a 2-amino acid insert and also had a greater B-cell epitope prediction. Taro profilins showed 83% to 92% similarity to known characterized profilins. Further, commercial allergen test strips for hazelnuts, where profilin is a secondary allergen, have potential for screening in a taro germplasm to reduce acridity and during food processing to avoid overcooking.

3.
Nat Genet ; 54(5): 715-724, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551309

RESUMO

Transgenic papaya is widely publicized for controlling papaya ringspot virus. However, the impact of particle bombardment on the genome remains unknown. The transgenic SunUp and its progenitor Sunset genomes were assembled into 351.5 and 350.3 Mb in nine chromosomes, respectively. We identified a 1.64 Mb insertion containing three transgenic insertions in SunUp chromosome 5, consisting of 52 nuclear-plastid, 21 nuclear-mitochondrial and 1 nuclear genomic fragments. A 591.9 kb fragment in chromosome 5 was translocated into the 1.64 Mb insertion. We assembled a gapless 9.8 Mb hermaphrodite-specific region of the Yh chromosome and its 6.0 Mb X counterpart. Resequencing 86 genomes revealed three distinct groups, validating their geographic origin and breeding history. We identified 147 selective sweeps and defined the essential role of zeta-carotene desaturase in carotenoid accumulation during domestication. Our findings elucidated the impact of particle bombardment and improved our understanding of sex chromosomes and domestication to expedite papaya improvement.


Assuntos
Carica , Carica/genética , Cromossomos de Plantas/genética , Domesticação , Melhoramento Vegetal , Cromossomos Sexuais
4.
Nat Genet ; 51(10): 1549-1558, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570895

RESUMO

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a 'one-step operation'. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513 Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars 'Smooth Cayenne' and 'Queen' exhibited ancient and recent admixture, while 'Singapore Spanish' supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.


Assuntos
Ananas/genética , Produtos Agrícolas/genética , Domesticação , Genoma de Planta , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Característica Quantitativa Herdável , Ananas/crescimento & desenvolvimento , Bromelaínas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fenótipo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Dinâmica Populacional , Açúcares/metabolismo
5.
Am J Bot ; 101(1): 201-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24414431

RESUMO

PREMISE OF THE STUDY: Floral nectar sugar compositions have, for several decades, been used to predict a plant species' pollinator guild. Plants possessing a generalist ornithophilous pollination syndrome produce nectar that is dilute (8-12% w/v sugars) with a low sucrose to hexose (glucose and fructose) ratio. The Hawaiian lobeliad genus Clermontia contains 22 endemic species of shrubs and small trees that are believed to have evolved flowers adapted for pollination by now mostly extinct or endangered endemic passerines in the Drepanidinae and Mohoidae. METHODS: We analyzed the nectar sugar compositions, concentration, and nectar standing crop of 23 taxa to test the assumption that Clermontia taxa have evolved floral traits in response to selection pressures from these avian pollinators. KEY RESULTS: All Clermontia taxa produced nectar with sugar concentrations (mean: 9.2% w/v ± 1.8 SD) comparable to the nectar of other plant species with a generalized bird pollination system. Nectar sugars were overwhelmingly composed of hexoses in all taxa (mean sucrose/hexose ratio: 0.02 ± 0.02). Nectar standing crop volumes varied widely among taxa, ranging from 9.7 µL ± 7.1 to 430.5 µL ± 401.8 (mean volume: 177.8 ± 112.0). CONCLUSIONS: Collectively, the nectar traits indicate that Clermontia species possess a generalist passerine pollination syndrome.


Assuntos
Campanulaceae/fisiologia , Flores/fisiologia , Fenótipo , Néctar de Plantas/fisiologia , Polinização/fisiologia , Carboidratos/análise , Havaí
6.
Planta ; 237(1): 173-87, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23001197

RESUMO

Heteroxylans in the plant cell wall have been proposed to have a role analogous to that of xyloglucans or heteromannans, forming growth-restraining networks by interlocking cellulose microfibrils. A xylan endotransglycosylase has been identified that can transglycosylate heteroxylan polysaccharides in the presence of xylan-derived oligosaccharides. High activity was detected in ripe fruit of papaya (Carica papaya), but activity was also found in a range of other fruits, imbibed seeds and rapidly growing seedlings of cereals. Xylan endotransglycosylase from ripe papaya fruit used a range of heteroxylans, such as wheat arabinoxylan, birchwood glucuronoxylan and various heteroxylans from dicotyledonous primary cell walls purified from tomato and papaya fruit, as donor molecules. As acceptor molecules, the enzyme preferentially used xylopentaitol over xylohexaitol or shorter-length acceptors. Xylan endotransglycosylase was active over a broad pH range and could perform transglycosylation reactions up to 55 °C. Xylan endotransglycosylase activity was purified from ripe papaya fruit by ultrafiltration and cation exchange chromatography. Highest endotransglycosylase activity was identified in fractions that also contained high xylan hydrolase activity and correlated with the presence of the endoxylanase CpaEXY1. Recombinant CpaEXY1 protein transiently over-expressed in Nicotiana benthamiana leaves showed both endoxylanase and xylan endotransglycosylase activities in vitro, suggesting that CpaEXY1 is a single enzyme with dual activity in planta. Purified native CpaEXY1 showed two- to fourfold higher endoxylanase than endotransglycosylase activity, suggesting that CpaEXY1 may act primarily as a hydrolase. We propose that xylan endotransglycosylase activity (like xyloglucan and mannan endotransglycosylase activities) could be involved in remodelling or re-arrangement of heteroxylans of the cellulose-non-cellulosic cell wall framework.


Assuntos
Parede Celular/enzimologia , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Carica/enzimologia , Carica/metabolismo , Parede Celular/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Frutas/enzimologia , Frutas/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Cinética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Folhas de Planta/genética , Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Nicotiana/genética , Xilanos/metabolismo
7.
Chromosome Res ; 20(6): 753-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23007683

RESUMO

Papaya is a model system for the study of sex chromosome evolution in plants. However, the cytological structures of the papaya chromosomes remain largely unknown and chromosomal features have not been linked with any genetic or genomic data. We constructed a cytogenetic map of the papaya sex chromosome (chromosome 1) by hybridizing 16 microsatellite markers and 2 cytological feature-associated markers on pachytene chromosomes using fluorescence in situ hybridization (FISH). Except for three markers, the order of the markers was concordant to that of marker loci along the linkage map. This discrepancy was likely caused by skewed segregation in the highly heterochromatic or centromeric regions. The papaya sex chromosome is largely euchromatic, its heterochromatin spans about 15 % of the Y chromosome and is mostly restricted to the centromeric and pericentromeric regions. Analysis of the recombination frequency along the papaya sex chromosome revealed a complete suppression of recombination in the centromere and pericentromere region and 60 % higher recombination rate in the long arm than in the short arm. The uneven distribution of recombination events might be caused by differences in sequence composition. Sequence analysis of 18 scaffolds in total length of 15 Mb revealed higher gene density towards the telomeres and lower gene density towards the centromere, and a relatively higher gene density in the long arm than in the short arm. In an opposite trend, the centromeric and pericentromeric region contained the highest repetitive sequences and the long arm showed the lowest repetitive sequences. This cytogenetic map provides essential information for evolutionary study of sex chromosomes in Caricaceae and will facilitate the analysis of papaya sex chromosomes.


Assuntos
Carica/genética , Recombinação Genética/genética , Cromossomos Sexuais/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , Análise Citogenética , Marcadores Genéticos/genética , Hibridização in Situ Fluorescente , Regiões de Interação com a Matriz/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Análise de Sequência de DNA
8.
Plant Physiol ; 152(4): 2013-22, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20181753

RESUMO

Carotenoid pigments in fruits are indicative of the ripening process and potential nutritional value. Papaya (Carica papaya) fruit flesh color is caused by the accumulation of lycopene or beta-carotenoids in chromoplasts. It is a distinct feature affecting nutritional composition, fruit quality, shelf life, and consumer preference. To uncover the molecular basis of papaya flesh color, we took map-based cloning and candidate gene approaches using integrated genetic and physical maps. A DNA marker tightly linked to flesh color colocalized on a contig of the physical map with a cDNA probe of the tomato (Solanum lycopersicum) chromoplast-specific lycopene beta-cyclase, CYC-b. Candidate gene sequences were obtained from amplified fragments and verified by sequencing two bacterial artificial chromosomes containing the two alleles. Sequence comparison revealed a 2-bp insertion in the coding region of the recessive red flesh allele resulting in a frame-shift mutation and a premature stop codon. A color complementation test in bacteria confirmed that the papaya CpCYC-b is the gene controlling fruit flesh color. Sequence analysis of wild and cultivated papaya accessions showed the presence of this frame-shift mutation in all red flesh accessions examined. Evaluation of DNA markers near CpCYC-b revealed a recombination hot spot, showing that CpCYC-b is located in a gene-rich region with a recombination rate at 3.7 kb per centimorgan, more than 100-fold higher than the genome average at 400 kb per centimorgan. Conserved microsynteny of the CpCYC-b region is indicated by colinearity of two to four genes between papaya, Arabidopsis (Arabidopsis thaliana), grape (Vitis vinifera), and tomato. Our results enhanced our understanding of papaya flesh color inheritance and generated new tools for papaya improvement.


Assuntos
Carica/enzimologia , Liases Intramoleculares/metabolismo , Recombinação Genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Carica/genética , Carica/crescimento & desenvolvimento , Carotenoides/biossíntese , Cromossomos Artificiais Bacterianos , Clonagem Molecular , DNA de Plantas , Mutação da Fase de Leitura , Liases Intramoleculares/química , Liases Intramoleculares/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
9.
Genome ; 52(8): 716-25, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19767901

RESUMO

A high-density genetic linkage map of papaya, previously developed using an F2 mapping population derived from the intraspecific cross AU9 x SunUp, was enriched with AFLP markers. The comprehensive genetic map presented here spans 945.2 cM and covers 9 major and 5 minor linkage groups containing 712 SSR, 277 AFLP, and 1 morphological markers. The average marker density for the 9 major linkage groups is 0.9 cM between adjacent markers, and the total number of gaps >5 cM was reduced from 48 to 27 in the current map. AFLPs generated by EcoRI/MseI primer combinations were distributed throughout the 14 linkage groups and resulted in several large locus order rearrangements within the 9 major linkage groups. Integration of AFLP markers provided tighter linkage association between loci, leading to a reduction in map distance on LGs 1, 2, and 4, which were inflated in the previous map, and correction of the marker order on LG8. Suppression of recombination in the male-specific Y region (MSY) of LG1 is further validated by the addition of 27 sex co-segregating AFLP markers. A large region of distorted segregation surrounding the MSY spans 54.4 cM and represents approximately 71% of the linkage group. This comprehensive high-density genetic map provides a framework for mapping quantitative trait loci and for fine mapping as well as for comparative genomic studies of crop plant development and evolution.


Assuntos
Carica/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Mapeamento Cromossômico , Genes de Plantas , Ligação Genética , Marcadores Genéticos , Polimorfismo Genético
10.
J Econ Entomol ; 102(1): 69-78, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19253620

RESUMO

Insects are commonly found by Hawaii's quarantine inspectors on Christmas trees imported from the Pacific Northwest. To reduce the risk of importing yellowjacket (Vespula spp.) queens and other insects, an inspection and tree shaking certification program was begun in 1990. From 1993 to 2006, the annual percentage of shipped containers rated by Hawaii quarantine inspectors as moderately or highly infested with insects was significantly higher for manually shaken trees than for mechanically shaken trees. Between 1993 and 2001, 343 insect species in total were recovered from Christmas trees. Live western yellowjacket [Vespula pensylvanica (Saussure)] queens were intercepted both from containers certified as manually shaken and from containers certified as mechanically shaken. The standard manual shaking protocol removed about one-half of the queens from Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] trees that were naturally infested with western yellowjacket queens. We investigated the use of preharvest sprays of permethrin as a complement to shaking procedures used to control yellowjackets and other insects. Western yellowjacket queens and honey bees (surrogates for wasp pests) were exposed to Noble fir foliage that had been sprayed in the field with permethrin > 6 wk before harvest. Pesticide residues provided complete control (moribundity or mortality) in both species. The sprays did not affect needle retention or quality of Noble fir foliage. We conclude that preharvest sprays of pyrethroid insecticides could be used in combination with mechanical shaking to greatly reduce the quarantine risk of yellowjacket queens and other insects in exported Christmas trees.


Assuntos
Controle de Insetos/métodos , Inseticidas , Permetrina , Pseudotsuga/parasitologia , Vespas , Animais , Havaí , Quarentena , Chuva
11.
Nature ; 452(7190): 991-6, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18432245

RESUMO

Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.


Assuntos
Carica/genética , Genoma de Planta/genética , Arabidopsis/genética , Mapeamento de Sequências Contíguas , Bases de Dados Genéticas , Genes de Plantas/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/genética , Clima Tropical
12.
Planta ; 227(4): 741-53, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17985156

RESUMO

In the ABC model of flower development, B function organ-identity genes act in the second and third whorls of the flower to control petal and stamen identity. The trioecious papaya has male, female, and hermaphrodite flowers and is an ideal system for testing the B-class gene expression patterns in trioecious plants. We cloned papaya B-class genes, CpTM6-1, CpTM6-2, and CpPI, using MADS box gene specific degenerate primers followed by cDNA library screening and sequencing of positive clones. While phylogenetic analyses show that CpPI is the ortholog of the Arabidopsis gene PI, the CpTM6-1 and CpTM6-2 loci are representatives of the paralogous TM6 lineage that contain paleoAP3 motifs unlike the euAP3 gene observed in Arabidopsis. These two paralogs appeared to have originated from a tandem duplication occurred approximately 13.4 million year ago (mya) (bootstrap range 13.36 +/- 2.42). In-situ hybridization and RT-PCR showed that the papaya B-class genes were highly expressed in young flowers across all floral organ primordia. As the flower organs developed, all three B-class genes were highly expressed in petals of all three-sex types and in stamens of hermaphrodite and male flowers. CpTM6-1 expressed at low levels in sepals and carpels, whereas CpTM6-2 expressed at a low level in sepals and at a high level in leaves. Our results showed that B-class gene homologs could function as predicted by the ABC model in trioecous flowers but differential expressions of CpTM6-1, and CpTM6-2, and CpPI suggested the diversification of their functions after the duplication events.


Assuntos
Carica/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Southern Blotting , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Proteínas de Domínio MADS/classificação , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
13.
Genetics ; 177(4): 2481-91, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17947401

RESUMO

A high-density genetic map of papaya (Carica papaya L.) was constructed using microsatellite markers derived from BAC end sequences and whole-genome shot gun sequences. Fifty-four F(2) plants derived from varieties AU9 and SunUp were used for linkage mapping. A total of 707 markers, including 706 microsatellite loci and the morphological marker fruit flesh color, were mapped into nine major and three minor linkage groups. The resulting map spanned 1069.9 cM with an average distance of 1.5 cM between adjacent markers. This sequence-based microsatellite map resolved the very large linkage group 2 (LG 2) of the previous high-density map using amplified fragment length polymorphism markers. The nine major LGs of our map represent papaya's haploid nine chromosomes with LG 1 of the sex chromosome being the largest. This map validates the suppression of recombination at the male-specific region of the Y chromosome (MSY) mapped on LG 1 and at potential centromeric regions of other LGs. Segregation distortion was detected in a large region on LG 1 surrounding the MSY region due to the abortion of the YY genotype and in a region of LG6 due to an unknown cause. This high-density sequence-tagged genetic map is being used to integrate genetic and physical maps and to assign genome sequence scaffolds to papaya chromosomes. It provides a framework for comparative structural and evolutional genomic research in the order Brassicales.


Assuntos
Brassicaceae/genética , Carica/genética , Mapeamento Cromossômico/métodos , Evolução Biológica , Cromossomos de Plantas , Genes de Plantas , Ligação Genética , Genoma de Planta , Repetições de Microssatélites
14.
Physiol Plant ; 131(3): 470-80, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18251885

RESUMO

Papaya (Carica papaya L.) cell wall matrix polysaccharides are modified as the fruit starts to soften during ripening and an endoxylanase is expressed that may play a role in the softening process. Endoxylanase gene expression, protein amount and activity were determined in papaya cultivars that differ in softening pattern and in one cultivar where softening was modified by the ethylene receptor inhibitor 1-methylcyclopropene (1-MCP). Antibodies to the endoxylanase catalytic domain were used to determine protein accumulation. The three papaya varieties used in the study, 'Line 8', 'Sunset', and 'Line 4-16', differed in softening pattern, respiration rate, ethylene production and showed similar parallel relationships during ripening and softening in endoxylanase expression, protein level and activity. When fruit of the three papaya varieties showed the respiratory climacteric and started to soften, the level of endoxylanase gene expression increased and this increase was related to the amount of endoxylanase protein at 32 kDa and its activity. Fruit when treated at less than 10% skin yellow stage with 1-MCP showed a significant delay in the respiratory climacteric and softening, and reduced ethylene production, and when ripe was firmer and had a 'rubbery' texture. The 1-MCP-treated fruit that had the 'rubbery' texture showed suppressed endoxylanase gene expression, protein and enzymatic activity. Little or no delay occurred between endoxylanase gene expression and the appearance of activity during posttranslational processing from 65 to 32 kDa. The close relationship between endoxylanase gene expression, protein accumulation and activity in different varieties and the failure of the 1-MCP-treated fruit to fully soften, supported de novo synthesis of endoxylanase, rapid posttranslation processing and a role in papaya fruit softening.


Assuntos
Carica/crescimento & desenvolvimento , Endo-1,4-beta-Xilanases/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Carica/genética , Carica/metabolismo , Respiração Celular/efeitos dos fármacos , Ciclopropanos/farmacologia , Endo-1,4-beta-Xilanases/genética , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Receptores de Superfície Celular/antagonistas & inibidores
15.
Funct Plant Biol ; 30(4): 433-441, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-32689028

RESUMO

Papaya (Carica papaya L.) softening during fruit ripening is correlated with the activities of an endoxylanase (EC 3.2.1.8). A 32.5-kDa xylanase (CpaEXY1) from ripening fruit mesocarp was purified 45 871-fold on enzymatic activity and to homogeneity by SDS electrophoresis. The enzyme had endo- and not exo-xylanase activity, a pH optimum of 5-7 and was inhibited by Ca2+, Co2+, and Zn2+. Degenerate primers were constructed from five peptides obtained from the purified enzyme, and a full-length cDNA clone (AY138968) was isolated from a library constructed from ripening mesocarp. CpaEXY1 coded for a 64.96-kDa protein that had up to 61% identity with the 12 predicted Arabidopsis Family 10 endoxylanase-like sequences and 40% to the barley aleurone xylanase. The peptide sequences, obtained from the trypsin-digested purified protein, were all found between amino acid 267and 426 out of the predicted 584 amino acids. The N-terminal 27 amino acids were hydrophobic and formed a predicted secretory signal peptide. A predicted carbohydrate-binding module was located between amino acids 60and 182, distinct from the C-terminal endoxylanase catalytic center. CpaEXY1 was developmentally expressed during fruit ripening and the expression correlated with the variation in softening patterns of different varieties. The findings are consistent with the hypothesis that CpaEXY1 was expressed during fruit ripening; the expression was correlated with softening and was modified by post-translational proteolysis. This modification may take place in the cell wall, and regulate enzyme activity and cell-wall-microdomain-specific hydrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...