Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Knowl Manag Aquat Ecosyst ; 424(19): 1-16, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37593206

RESUMO

Both native and non-native taxa richness patterns are useful for evaluating areas of greatest conservation concern. To determine those patterns, we analyzed fish and macroinvertebrate taxa richness data obtained at 3475 sites collected by the USEPA's National Rivers and Streams Assessment. We also determined which natural and anthropogenic variables best explained patterns in regional richness. Macroinvertebrate and fish richness increased with the number of sites sampled per region. Therefore, we determined residual taxa richness from the deviation of observed richness from predicted richness given the number of sites per region. Regional richness markedly exceeded average site richness for both macroinvertebrates and fish. Predictors of macroinvertebrate-genus and fish-species residual-regional richness differed. Air temperature was an important predictor in both cases but was positive for fish and negative for macroinvertebrates. Both natural and land use variables were significant predictors of regional richness. This study is the first to determine mean site and regional richness of both fish and aquatic macroinvertebrates across the conterminous USA, and the key anthropogenic drivers of regional richness. Thus, it offers important insights into regional USA biodiversity hotspots.

2.
Limnol Oceanogr ; 67(7): 1484-1501, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36212524

RESUMO

Lake water levels are integral to lake function, but hydrologic changes from land and water management may alter lake fluctuations beyond natural ranges. We constructed a conceptual model of multifaceted drivers of lake water-levels and evaporation-to-inflow ratio (Evap:Inflow). Using a structural equation modeling framework, we tested our model on 1) a national subset of lakes in the conterminous United States with minimal water management to describe natural drivers of lake hydrology and 2) five ecoregional subsets of lakes to explore regional variation in water management effects. Our model fit the national and ecoregional datasets and explained up to 47% of variation in Evap:Inflow, 38% of vertical water-level decline, and 79% of horizontal water-level decline (littoral exposure). For lakes with minimal water management, Evap:Inflow was related to lake depth (ß = -0.31) and surface inflow (ß = -0.44); vertical decline was related to annual climate (e.g., precipitation ß = -0.18) and water management (ß = -0.21); and horizontal decline was largely related to vertical decline (ß = 0.73) and lake morphometry (e.g., depth ß = -0.18). Anthropogenic effects varied by ecoregion and likely reflect differences in regional water management and climate. In the West, water management indicators were related to greater vertical decline (ß = 0.38), whereas in the Midwest, these indicators were related to more stable and full lake levels (ß = -0.22) even during drought conditions. National analyses show how human water use interacts with regional climate resulting in contrasting impacts to lake hydrologic variation in the US.

3.
Ecol Indic ; 141: 109046, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991319

RESUMO

Anthropogenic alteration of physical habitat structure in streams and rivers is increasingly recognized as a major cause of impairment worldwide. As part of their assessment of the status and trends in the condition of rivers and streams in the U.S., the U.S. Environmental Protection Agency's (USEPA) National Aquatic Resource Surveys (NARS) quantify and monitor channel size and slope, substrate size and stability, instream habitat complexity and cover, riparian vegetation cover and structure, anthropogenic disturbance activities, and channel-riparian interaction. Like biological assemblages and water chemistry, physical habitat is strongly controlled by natural geoclimatic factors that can obscure or amplify the influence of human activities. We developed a systematic approach to estimate the deviation of observed river and stream physical habitat from that expected in least-disturbed reference conditions. We applied this approach to calculate indices of anthropogenic alteration of three aspects of physical habitat condition in the conterminous U.S. (CONUS): streambed sediment size and stability, riparian vegetation cover, and instream habitat complexity. The precision and responsiveness of these indices led the USEPA to use them to evaluate physical habitat condition in CONUS rivers and streams. The scores of these indices systematically decreased with greater anthropogenic disturbance at river and stream sites in the CONUS and within ecoregions, which we interpret as a response of these physical habitat indices to anthropogenic influences. Although anthropogenic activities negatively influenced all three physical habitat indices in the least-disturbed sites within most ecoregions, natural geoclimatic and geomorphic factors were the dominant influences. For sites over the full range of anthropogenic disturbance, analyses of observed/expected sediment characteristics showed augmented flood flows and basin and riparian agriculture to be the leading predictors of streambed instability and excess fine sediments. Similarly, basin and riparian agriculture and non-agricultural riparian land uses were the leading predictors of reduced riparian vegetation cover complexity in the CONUS and within ecoregions. In turn, these reductions in riparian vegetation cover and complexity, combined with reduced summer low flows, were the leading predictors of instream habitat simplification. We conclude that quantitative measures of physical habitat structure are useful and important indicators of the impacts of human activities on stream and river condition.

4.
Ecol Indic ; 141: 109047, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991318

RESUMO

Rigorous assessments of the ecological condition of water resources and the effect of human activities on those waters require quantitative physical, chemical, and biological data. The U.S. Environmental Protection Agency's river and stream surveys quantify river and stream bed particle size and stability, instream habitat complexity and cover, riparian vegetation cover and structure, and anthropogenic disturbance activities. Physical habitat is strongly controlled by natural geoclimatic factors that co-vary with human activities. We expressed the anthropogenic alteration of physical habitat as O/E ratios of observed habitat metric values divided by values expected under least-disturbed reference conditions, where site-specific expected values vary given their geoclimatic and geomorphic context. We set criteria for good, fair, and poor condition based on the distribution of O/E values in regional least-disturbed reference sites. Poor conditions existed in 22-24% of the 1.2 million km of streams and rivers in the conterminous U.S. for riparian human disturbance, streambed sediment and riparian vegetation cover, versus 14% for instream habitat complexity. Based on the same four indicators, the percentage of stream length in poor condition within 9 separate U.S. ecoregions ranged from 4% to 42%. Associations of our physical habitat indices with anthropogenic pressures demonstrate the scope of anthropogenic habitat alteration; habitat condition was negatively related to the level of anthropogenic disturbance nationally and in nearly all ecoregions. Relative risk estimates showed that streams and rivers with poor sediment, riparian cover complexity, or instream habitat cover conditions were 1.4 to 2.6 times as likely to also have fish or macroinvertebrate assemblages in poor condition. Our physical habitat condition indicators help explain deviations in biological conditions from those observed among least-disturbed sites and inform management actions for rehabilitating impaired waters and mitigating further ecological degradation.

5.
Ecol Indic ; 141: 1-13, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36003067

RESUMO

Taxonomic inconsistency in species-level identifications has constrained use of diatoms as biological indicators in aquatic assessments. We addressed this problem by developing diatom multimetric indices (MMIs) of ecological condition using genus-level taxonomy and trait-based autecological information. The MMIs were designed to assess river and stream chemical, physical and biological condition across the conterminous United States. Trait-based approaches have the advantage of using both species-level and genus-level data, which require less effort and expense to acquire than traditional species-based approaches and eliminate the persistent taxonomic biases introduced over vast geographic extents. For large-extent assessment programs that require multiple taxonomic laboratories to process samples, such as the United States Environmental Protection Agency's (U.S. EPA's) National Rivers and Streams Assessment (NRSA), the trait approach can eliminate discrepancies in species-level identification or nomenclature that hinder diatom data interpretation. We developed trait-based MMIs using NRSA data for each of the three large ecoregions across the U.S. - the East, Plains, and West. All three MMIs performed well in discriminating least-disturbed from most-disturbed sites. The MMI for the East had the greatest discrimination ability, followed by MMIs for the Plains and West, respectively. The performance of the MMIs was comparable to that observed in existing NRSA fish and macroinvertebrate MMIs. Our research shows that trait-based diatom indices constructed on genus-level taxonomy can be effective for large-scale assessments, and may also allow programs such as NRSA to assess trends in freshwater condition retrospectively, by revisiting older diatom datasets. Moreover, our genus-based approach facilitates including of diatoms into other assessment programs that have limited monitoring resources.

6.
Ecol Indic ; 1222021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33897301

RESUMO

Lakes face multiple anthropogenic pressures that can substantially alter their hydrology. Dams and land use in the watershed (e.g., irrigated agriculture) can modify lake water regimes beyond natural ranges, and changing climate may exacerbate anthropogenic stresses on lake hydrology. However, we lack cost-effective indicators to quantify anthropogenic hydrologic alteration potential in lakes at regional and national extents. We developed a framework to rank lakes by the potential for dams and land use to alter lake hydrology (HydrAP) that can be applied at a national scale. The HydrAP framework principles are that 1) dams are primary drivers of lake hydro-alteration, 2) land use activities are secondary drivers that alter watershed hydrology, and 3) topographic relief limits where land use and dams are located on the landscape. We ranked lakes in the United States Environmental Protection Agency National Lakes Assessment (NLA) on a HydrAP scale from zero to seven, where a zero indicates lakes with no potential for anthropogenic hydro-alteration, and a seven indicates large dams and/or intensive land use with high potential to alter lake hydrology. We inferred HydrAP population distributions in the conterminous US (CONUS) using the NLA probabilistic weights. Half of CONUS lakes had moderate to high hydro-alteration potential (HydrAP ranks 3-7), the other half had minimal to no hydro-alteration potential (HydrAP ranks 0-2). HydrAP ranks generally corresponded with natural and man-made lake classes, but >15% of natural lakes had moderate to high HydrAP ranks and ~10% of man-made lakes had low HydrAP ranks. The Great Plains, Appalachians, and Coastal Plains had the largest percentages (>50%) of high HydrAP lakes, and the West and Midwest had the lowest percentages (~30%). Water residence time (τ) and water-level change were associated with HydrAP ranks, demonstrating the framework's intended ability to differentiate anthropogenic stressors that can alter lake hydrology. Consistently across ecoregions high HydrAP lakes had shorter τ. But HydrAP relationships with water-level change varied by ecoregion. In the West and Appalachians, high HydrAP lakes experienced excessive water-level declines compared to low-ranked lakes. In contrast, high HydrAP lakes in the Great Plains and Midwest showed stable water levels compared to low-ranked lakes. These differences imply that water management in western and eastern mountainous regions may result in large water-level fluctuations, but water management in central CONUS may promote water-level stabilization. The HydrAP framework using accessible, national datasets can support large-scale lake assessments and be adapted to specific locations where data are available.

7.
J Am Water Resour Assoc ; 56(3): 450-471, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32699495

RESUMO

Establishing baseline hydrologic characteristics for lakes in the U.S. is critical to evaluate changes to lake hydrology. We used the U.S. EPA National Lakes Assessment 2007 and 2012 surveys to assess hydrologic characteristics of a population of ~45,000 lakes in the conterminous U.S. based on probability samples of ~1,000 lakes/yr distributed across nine ecoregions. Lake hydrologic study variables include water-level drawdown (i.e., vertical decline and horizontal littoral exposure) and two water stable isotope-derived parameters: evaporation-to-inflow (E:I) and water residence time. We present 1) national and regional distributions of the study variables for both natural and man-made lakes and 2) differences in these characteristics between 2007 and 2012. In 2007, 59% of the population of U.S. lakes had Greater than normal or Excessive drawdown relative to water levels in ecoregional reference lakes with minimal human disturbances; while in 2012, only 20% of lakes were significantly drawn down beyond normal ranges. Water isotope-derived variables did not differ significantly between survey years in contrast to drawdown. Median E:I was 20% indicating that flow-through processes dominated lake water regimes. For 75% of U.S. lakes, water residence time was < 1 year and was longer in natural vs. man-made lakes. Our study provides baseline ranges to assess local and regional lake hydrologic status and inform management decisions in changing environmental conditions.

8.
Environ Monit Assess ; 191(Suppl 1): 320, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222378

RESUMO

We analyzed data from 967 randomly selected wetland sites across the conterminous United States (US) as part of the 2011 National Wetland Condition Assessment (NWCA) to investigate the relative and attributable risk of various stressors on wetland vegetation condition. Indicators of stress included six physical stressors (damming, ditching, filling/erosion, hardening, vegetation removal, and vegetation replacement) and two chemical stressors (soil phosphorus and heavy metals) that represent a wide range of human activities. Risk was evaluated nationally and within four aggregate ecoregions and four aggregate wetland types. Nationally, all of the stressors except soil heavy metals and phosphorus had a significant relative risk but values were always < 2 (a relative risk of two indicates that it's twice as likely to have poor vegetation condition when the stressor is present relative to when it is absent). Among the different ecoregions or wetland types, no one stressor was consistently riskier; all of the stressors were associated with poor vegetation condition in one or another of the subpopulations. Overall, hardening had the highest attributable and relative risks in the most different subpopulations. Attributable risks above 25% were observed for vegetation removal in the Coastal Plain, hardening and ditching in the West, and hardening in Estuarine Woody wetlands. Relative risks above 3 were noted for heavy metals and soil phosphorus in the Interior Plains, and vegetation removal, vegetation replacement, and damming in Estuarine Woody wetlands. Relative and attributable risk were added to the data analyses tools used in the NWCA to improve the ability of survey results to assist managers and policy makers in setting priorities based on conditions observed on the ground. These analyses provide useful information to both individual site managers and regional-national policy makers.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Áreas Alagadas , Biomarcadores Ambientais , Atividades Humanas , Humanos , Plantas , Medição de Risco , Solo , Poluentes do Solo/análise , Estados Unidos
9.
Environ Monit Assess ; 191(Suppl 1): 325, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222397

RESUMO

The first National Wetland Condition Assessment (NWCA) was conducted in 2011 by the US Environmental Protection Agency (USEPA) and its federal and state partners, using a survey design that allowed inference of results to national and regional scales. Vegetation, algae, soil, water chemistry, and hydrologic data were collected at each of 1138 locations across the conterminous United States (US). Ecological condition was assessed in relation to a disturbance gradient anchored by least disturbed (reference) and most disturbed sites identified using chemical, physical, and biological disturbance indices based on site-level data. A vegetation multimetric index (VMMI) was developed as an indicator of condition, and included four metrics: a floristic quality assessment index, relative importance of native plants, number of disturbance-tolerant plant species, and relative cover of native monocots. Potential stressors to wetland condition were identified and incorporated into two indicators of vegetation alteration, four indicators of hydrologic alteration, a soil heavy metal index, and a nonnative plant indicator and were used to quantify national and regional stressor extent, and the associated relative and attributable risk. Approximately 48 ± 6% of the national wetland area was found to be in good condition and 32 ± 6% in poor condition as defined by the VMMI. Across the conterminous US, approximately 20% of wetland area had high or very high stressor levels related to nonnative plants. Vegetation removal, hardening, and ditching stressors had the greatest extent of wetland area with high stressor levels, affecting 23-27% of the wetland area in the NWCA sampled population. The results from the 2016 NWCA will build on those from the 2011 assessment and initiate the ability to report on trends in addition to status. The data and tools produced by the NWCA can be used by others to further our knowledge of wetlands in the conterminous US.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/estatística & dados numéricos , United States Environmental Protection Agency/estatística & dados numéricos , Áreas Alagadas , Monitoramento Ambiental/normas , Hidrologia/estatística & dados numéricos , Plantas/classificação , Fatores de Risco , Solo/química , Estados Unidos , United States Environmental Protection Agency/organização & administração , Água/química
10.
Environ Monit Assess ; 191(Suppl 1): 336, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222398

RESUMO

Soil concentrations of 12 heavy metals that have been linked to various anthropogenic activities were measured in samples collected from the uppermost horizon in approximately 1000 wetlands across the conterminous US as part of the 2011 National Wetland Condition Assessment (NWCA). The heavy metals were silver (Ag), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), antimony (Sb), tin (Sn), vanadium (V), tungsten (W), and zinc (Zn). Using thresholds to distinguish natural background concentrations from human-mediated additions, we evaluated wetland soil heavy metal concentrations in the conterminous US and four regions using a Heavy Metal Index (HMI) that reflects human-mediated heavy metal loads based on the number of elements above expected background concentration. We also examined the individual elements to detect concentrations of heavy metals above expected background that frequently occur in wetland soils. Our data show that wetland soils of the conterminous US typically have low heavy metal loads, and that most of the measured elements occur nationally in concentrations below thresholds that relate to anthropogenic activities. However, we found that soil lead is more common in wetland soils than other measured elements, occurring nationally in 11.3% of the wetland area in concentrations above expected natural background (> 35 ppm). Our data show positive relationships between soil lead concentration and four individual landscape metrics: road density, percent impervious surface, housing unit density, and population density in a 1-km radius buffer area surrounding a site. These relationships, while evident on a national level, are strongest in the eastern US, where the highest road densities and greatest population densities occur. Because lead can be strongly bound to wetland soils in particular, maintenance of the good condition of our nation's wetlands is likely to minimize risk of lead mobilization.


Assuntos
Monitoramento Ambiental/métodos , Atividades Humanas , Metais Pesados/análise , Poluentes do Solo/análise , Áreas Alagadas , Monitoramento Ambiental/estatística & dados numéricos , Atividades Humanas/classificação , Atividades Humanas/estatística & dados numéricos , Humanos , Fatores de Risco , Estados Unidos
12.
Environ Manage ; 38(6): 1020-30, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17058032

RESUMO

The regional-scale importance of an aquatic stressor depends both on its regional extent (i.e., how widespread it is) and on the severity of its effects in ecosystems where it is found. Sample surveys, such as those developed by the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP), are designed to estimate and compare the extents, throughout a large region, of elevated conditions for various aquatic stressors. In this article, we propose relative risk as a complementary measure of the severity of each stressor's effect on a response variable that characterizes aquatic ecological condition. Specifically, relative risk measures the strength of association between stressor and response variables that can be classified as either "good" (i.e., reference) or "poor" (i.e., different from reference). We present formulae for estimating relative risk and its confidence interval, adapted for the unequal sample inclusion probabilities employed in EMAP surveys. For a recent EMAP survey of streams in five Mid-Atlantic states, we estimated the relative extents of eight stressors as well as their relative risks to aquatic macroinvertebrate assemblages, with assemblage condition measured by an index of biotic integrity (IBI). For example, a measure of excess sedimentation had a relative risk of 1.60 for macroinvertebrate IBI, with the meaning that poor IBI conditions were 1.6 times more likely to be found in streams having poor conditions of sedimentation than in streams having good sedimentation conditions. We show how stressor extent and relative risk estimates, viewed together, offer a compact and comprehensive assessment of the relative importances of multiple stressors.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Invertebrados/fisiologia , Modelos Teóricos , Risco , Rios/química , Poluição da Água/prevenção & controle , Animais , Coleta de Dados/métodos , Sedimentos Geológicos/análise , Mid-Atlantic Region
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...