Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002001

RESUMO

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Assuntos
Replicação do DNA , Mitose , Afidicolina/farmacologia , Proteína BRCA2/genética , Sítios Frágeis do Cromossomo/genética , DNA/genética , Dano ao DNA , Instabilidade Genômica , Humanos , Mitose/genética
2.
Nucleic Acids Res ; 49(20): 11787-11799, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718766

RESUMO

Extrachromosomal circular DNA (eccDNA) are present within all eukaryotic organisms and actively contribute to gene expression changes. MicroDNA (200-1000bp) are the most abundant type of eccDNA and can amplify tRNA, microRNA, and novel si-like RNA sequences. Due to the heterogeneity of microDNA and the limited technology to directly quantify circular DNA molecules, the specific DNA repair pathways that contribute to microDNA formation have not been fully elucidated. Using a sensitive and quantitative assay that quantifies eight known abundant microDNA, we report that microDNA levels are dependent on resection after double-strand DNA break (DSB) and repair by Microhomology Mediated End Joining (MMEJ). Further, repair of DSB without resection by canonical Non-Homologous End Joining (c-NHEJ) diminishes microDNA formation. MicroDNA levels are induced locally even by a single site-directed DSB, suggesting that excision of genomic DNA by two closely spaced DSB is not necessary for microDNA formation. Consistent with all this, microDNA levels accumulate as cells undergo replication in S-phase, when DNA breaks and repair are elevated, and microDNA levels are decreased if DNA synthesis is prevented. Thus, formation of microDNA occurs during the repair of endogenous or induced DNA breaks by resection-based DNA repair pathways.


Assuntos
Dano ao DNA , Reparo do DNA por Junção de Extremidades , DNA Circular/genética , Replicação do DNA , Células HEK293 , Células HeLa , Humanos
3.
Bio Protoc ; 11(9): e4003, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34124304

RESUMO

Recent studies from multiple labs including ours have demonstrated the importance of extrachromosomal circular DNA (eccDNA) from yeast to humans ( Shibata et al., 2012 ; Dillon et al., 2015 ; Møller et al., 2016 ; Kumar et al., 2017 ; Turner et al., 2017 ; Kim et al., 2020 ). More recently, it has been found that cancer cells obtain a selective advantage by amplifying oncogenes on eccDNA, which drives genomic instability ( Wu et al., 2019 ; Kim et al., 2020 ). Previously, we have purified circular DNA and enriched the population using rolling circle amplification followed by high-throughput sequencing for the identification of eccDNA based on the unique junctional sequence. However, eccDNA identification by rolling circle amplification is biased toward small circles. Here, we report a rolling circle-independent method to detect eccDNA in human cancer cells. We demonstrate a sensitive and robust step-by-step workflow for finding novel eccDNAs using ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) combined with a Circle_finder bioinformatics algorithm to predict the eccDNAs, followed by its validation using two independent methods, inverse PCR and metaphase FISH (Fluorescence in situ Hybridization).

4.
Sci Adv ; 6(20): eaba2489, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32440553

RESUMO

Extrachromosomal circular DNAs (eccDNAs) are somatically mosaic and contribute to intercellular heterogeneity in normal and tumor cells. Because short eccDNAs are poorly chromatinized, we hypothesized that they are sequenced by tagmentation in ATAC-seq experiments without any enrichment of circular DNA. Indeed, ATAC-seq identified thousands of eccDNAs in cell lines that were validated by inverse PCR and by metaphase FISH. ATAC-seq in gliomas and glioblastomas identify hundreds of eccDNAs, including one containing the well-known EGFR gene amplicon from chr7. More than 18,000 eccDNAs, many carrying known cancer driver genes, are identified in a pan-cancer analysis of ATAC-seq libraries from 23 tumor types. Somatically mosaic eccDNAs are identified by ATAC-seq even before amplification is recognized by genome-wide copy number variation measurements. Thus, ATAC-seq is a sensitive method to detect eccDNA present in a tumor at the pre-amplification stage and can be used to predict resistance to therapy.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Neoplasias , Linhagem Celular , DNA/genética , Variações do Número de Cópias de DNA , DNA Circular/genética , Humanos
5.
Genome Med ; 12(1): 15, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066500

RESUMO

BACKGROUND: While clinical factors such as age, grade, stage, and histological subtype provide physicians with information about patient prognosis, genomic data can further improve these predictions. Previous studies have shown that germline variants in known cancer driver genes are predictive of patient outcome, but no study has systematically analyzed multiple cancers in an unbiased way to identify genetic loci that can improve patient outcome predictions made using clinical factors. METHODS: We analyzed sequencing data from the over 10,000 cancer patients available through The Cancer Genome Atlas to identify germline variants associated with patient outcome using multivariate Cox regression models. RESULTS: We identified 79 prognostic germline variants in individual cancers and 112 prognostic germline variants in groups of cancers. The germline variants identified in individual cancers provide additional predictive power about patient outcomes beyond clinical information currently in use and may therefore augment clinical decisions based on expected tumor aggressiveness. Molecularly, at least 12 of the germline variants are likely associated with patient outcome through perturbation of protein structure and at least five through association with gene expression differences. Almost half of these germline variants are in previously reported tumor suppressors, oncogenes or cancer driver genes with the other half pointing to genomic loci that should be further investigated for their roles in cancers. CONCLUSIONS: Germline variants are predictive of outcome in cancer patients and specific germline variants can improve patient outcome predictions beyond predictions made using clinical factors alone. The germline variants also implicate new means by which known oncogenes, tumor suppressor genes, and driver genes are perturbed in cancer and suggest roles in cancer for other genes that have not been extensively studied in oncology. Further studies in other cancer cohorts are necessary to confirm that germline variation is associated with outcome in cancer patients as this is a proof-of-principle study.


Assuntos
Biomarcadores Tumorais/genética , Mutação em Linhagem Germinativa , Neoplasias/genética , Testes Genéticos/estatística & dados numéricos , Humanos , Neoplasias/patologia , Proteínas Oncogênicas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Proteínas Supressoras de Tumor/genética
6.
Nucleic Acids Res ; 47(9): 4586-4596, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30828735

RESUMO

Interest in extrachromosomal circular DNA (eccDNA) molecules has increased recently because of their widespread presence in normal cells across every species ranging from yeast to humans, their increased levels in cancer cells and their overlap with oncogenic and drug-resistant genes. However, the majority of eccDNA (microDNA) in mammalian tissues and cell lines are too small to carry protein coding genes. We have tested functional capabilities of microDNA by creating artificial microDNA molecules mimicking known microDNA sequences and have discovered that they express functional small regulatory RNA including microRNA and novel si-like RNA. MicroDNA are transcribed in vitro and in vivo independent of a canonical promoter sequence. MicroDNA that carry miRNA genes form transcripts that are processed by the endogenous RNA-interference pathway into mature miRNA molecules, which repress a luciferase reporter gene as well as endogenous mRNA targets of the miRNA. Further, microDNA that contain sequences of exons repress the endogenous gene from which the microDNA were derived through the formation of novel si-like RNA. We also show that endogenous microDNA associate with RNA polymerases subunits, POLR2H and POLR3F. Together, these results suggest that microDNA may modulate gene expression through the production of both known and novel regulatory small RNA.


Assuntos
DNA Circular/genética , MicroRNAs/genética , Interferência de RNA , RNA Polimerase III/genética , Animais , Linhagem Celular , Éxons/genética , Regulação da Expressão Gênica/genética , Genes Reporter/genética , Humanos , Regiões Promotoras Genéticas , RNA Polimerase III/química , RNA Mensageiro/genética
7.
Trends Genet ; 34(4): 270-278, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29329720

RESUMO

While the vast majority of cellular DNA in eukaryotes is contained in long linear strands in chromosomes, we have long recognized some exceptions like mitochondrial DNA, plasmids in yeasts, and double minutes (DMs) in cancer cells where the DNA is present in extrachromosomal circles. In addition, specialized extrachromosomal circles of DNA (eccDNA) have been noted to arise from repetitive genomic sequences like telomeric DNA or rDNA. Recently eccDNA arising from unique (nonrepetitive) DNA have been discovered in normal and malignant cells, raising interesting questions about their biogenesis, function and clinical utility. Here, we review recent results and future directions of inquiry on these new forms of eccDNA.


Assuntos
DNA Circular/genética , DNA Mitocondrial/genética , DNA de Neoplasias/genética , Neoplasias/genética , Células Neoplásicas Circulantes/química , Animais , Cromossomos Humanos/química , Cromossomos Humanos/metabolismo , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , DNA de Cloroplastos/metabolismo , DNA Circular/química , DNA Circular/metabolismo , DNA de Cinetoplasto/química , DNA de Cinetoplasto/genética , DNA de Cinetoplasto/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Humanos , Kinetoplastida/genética , Kinetoplastida/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Células Neoplásicas Circulantes/metabolismo , Plantas/genética , Plantas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telômero/química , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...