Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 943: 173793, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851333

RESUMO

Anaerobic microbial metabolisms make flooded paddy soils a major source of the greenhouse gas methane (CH4) and mobilize toxic arsenic (As), threatening rice production and consumption. Increasing temperatures due to climate change enhance these microbially mediated processes, increasing their related threats. Chronosequence studies show that long-term paddy use ("age") changes soil properties and redox biogeochemistry through soil organic carbon (SOC) accumulation, its association to amorphous iron (Fe) phases, and increased microbial activity. Using paddy and non-paddy soils from a chronosequence as proxies of soil development and incubating them at different temperatures, we show that paddy soil age influences the response of paddies to changes in temperature. Older paddies showed up to a 6-fold higher CH4 production with increasing temperature, compared to a 2-fold increase in young ones. Contrarily, changes in As mobility were higher in non-paddies and young paddies due to a lack of Fe-SOC-sorption sites. Temperature increased the formation of phytotoxic methylated As in all paddies, posing a risk for rice production. Mitigation strategies for future maintenance, abandonment, or management of paddy soils should include the consideration that history of use shapes the soils' biogeochemistry and microbiology and can influence the response of paddy soils to future temperature increases.

2.
Plant Cell Environ ; 47(7): 2526-2541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515431

RESUMO

A holistic understanding of plant strategies to acquire soil resources is pivotal in achieving sustainable food security. However, we lack knowledge about variety-specific root and rhizosphere traits for resource acquisition, their plasticity and adaptation to drought. We conducted a greenhouse experiment to phenotype root and rhizosphere traits (mean root diameter [Root D], specific root length [SRL], root tissue density, root nitrogen content, specific rhizosheath mass [SRM], arbuscular mycorrhizal fungi [AMF] colonization) of 16 landraces and 22 modern cultivars of temperate maize (Zea mays L.). Our results demonstrate that landraces and modern cultivars diverge in their root and rhizosphere traits. Although landraces follow a 'do-it-yourself' strategy with high SRLs, modern cultivars exhibit an 'outsourcing' strategy with increased mean Root Ds and a tendency towards increased root colonization by AMF. We further identified that SRM indicates an 'outsourcing' strategy. Additionally, landraces were more drought-responsive compared to modern cultivars based on multitrait response indices. We suggest that breeding leads to distinct resource acquisition strategies between temperate maize varieties. Future breeding efforts should increasingly target root and rhizosphere economics, with SRM serving as a valuable proxy for identifying varieties employing an outsourcing resource acquisition strategy.


Assuntos
Adaptação Fisiológica , Secas , Micorrizas , Raízes de Plantas , Rizosfera , Solo , Zea mays , Zea mays/fisiologia , Zea mays/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Solo/química , Micorrizas/fisiologia , Fenótipo , Nitrogênio/metabolismo
3.
Plant Cell Environ ; 47(6): 1987-1996, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38369964

RESUMO

Nitrogen availability in the rhizosphere relies on root-microorganism interactions, where root exudates trigger soil organic matter (SOM) decomposition through the rhizosphere priming effect (RPE). Though microbial necromass contribute significantly to organically bound soil nitrogen (N), the role of RPEs in regulating necromass recycling and plant nitrogen acquisition has received limited attention. We used 15N natural abundance as a proxy for necromass-N since necromass is enriched in 15N compared to other soil-N forms. We combined studies using the same experimental design for continuous 13CO2 labelling of various plant species and the same soil type, but considering top- and subsoil. RPE were quantified as difference in SOM-decomposition between planted and unplanted soils. Results showed higher plant N uptake as RPEs increased. The positive relationship between 15N-enrichment of shoots and roots and RPEs indicated an enhanced necromass-N turnover by RPE. Moreover, our data revealed that RPEs were saturated with increasing carbon (C) input via rhizodeposition in topsoil. In subsoil, RPEs increased linearly within a small range of C input indicating a strong effect of root-released C on decomposition rates in deeper soil horizons. Overall, this study confirmed the functional importance of rhizosphere C input for plant N acquisition through enhanced necromass turnover by RPEs.


Assuntos
Nitrogênio , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Carbono/metabolismo , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Plantas/metabolismo , Plantas/microbiologia , Solo/química
4.
New Phytol ; 242(2): 479-492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418430

RESUMO

Biophysicochemical rhizosheath properties play a vital role in plant drought adaptation. However, their integration into the framework of plant drought response is hampered by incomplete mechanistic understanding of their drought responsiveness and unknown linkage to intraspecific plant-soil drought reactions. Thirty-eight Zea mays varieties were grown under well-watered and drought conditions to assess the drought responsiveness of rhizosheath properties, such as soil aggregation, rhizosheath mass, net-rhizodeposition, and soil organic carbon distribution. Additionally, explanatory traits, including functional plant trait adaptations and changes in soil enzyme activities, were measured. Drought restricted soil structure formation in the rhizosheath and shifted plant-carbon from litter-derived organic matter in macroaggregates to microbially processed compounds in microaggregates. Variety-specific functional trait modifications determined variations in rhizosheath drought responsiveness. Drought responses of the plant-soil system ranged among varieties from maintaining plant-microbial interactions in the rhizosheath through accumulation of rhizodeposits, to preserving rhizosheath soil structure while increasing soil exploration through enhanced root elongation. Drought-induced alterations at the root-soil interface may hold crucial implications for ecosystem resilience in a changing climate. Our findings highlight that rhizosheath soil properties are an intrinsic component of plant drought response, emphasizing the need for a holistic concept of plant-soil systems in future research on plant drought adaptation.


Assuntos
Ecossistema , Solo , Solo/química , Secas , Carbono/análise , Plantas , Raízes de Plantas/fisiologia
5.
New Phytol ; 239(4): 1449-1463, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343598

RESUMO

Stable isotope signatures of fungal sporocarps have been instrumental in identifying carbon gains of chlorophyllous orchids from a fungal source. Yet, not all mycorrhizal fungi produce macroscopic sporocarps and frequently fungi of different taxa occur in parallel in orchid roots. To overcome this obstacle, we investigated stable isotope signatures of fungal pelotons extracted from orchid roots and compared these data to the respective orchid and reference plant tissues. Anoectochilus sandvicensis and Epipactis palustris represented specialized or unspecialized rhizoctonia-associated orchids. Epipactis atrorubens and Epipactis leptochila are orchids considered ectomycorrhiza-associated with different preferences for Basidio- and Ascomycota. 13 C enrichment of rhizoctonia pelotons was minor compared with plant tissues and significantly lower than enrichments of pelotons from ectomycorrhizal Epipactis species. 15 N values of pelotons from E. leptochila and E. atrorubens showed similar patterns as known for respective sporocarps of ectomycorrhizal Ascomycota and Basidiomycota, however, with an offset towards lower 15 N enrichments and nitrogen concentrations. Our results suggest an explicit fungal nutrition source of orchids associated with ectomycorrhizal fungi, whereas the low 13 C enrichment in rhizoctonia-associated orchids and fungal pelotons hamper the detection of carbon gains from fungal partners. 15 N isotopic pattern of orchids further suggests a selective transfer of 15 N-enriched protein-nitrogen into orchids.


Assuntos
Micorrizas , Orchidaceae , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Carbono , Nitrogênio , Orchidaceae/microbiologia , Rhizoctonia , Simbiose , Filogenia
6.
Ann Bot ; 131(2): 373-386, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36479887

RESUMO

BACKGROUND AND AIMS: Stomatal regulation allows plants to promptly respond to water stress. However, our understanding of the impact of above and belowground hydraulic traits on stomatal regulation remains incomplete. The objective of this study was to investigate how key plant hydraulic traits impact transpiration of maize during soil drying. We hypothesize that the stomatal response to soil drying is related to a loss in soil hydraulic conductivity at the root-soil interface, which in turn depends on plant hydraulic traits. METHODS: We investigate the response of 48 contrasting maize (Zea mays) genotypes to soil drying, utilizing a novel phenotyping facility. In this context, we measure the relationship between leaf water potential, soil water potential, soil water content and transpiration, as well as root, rhizosphere and aboveground plant traits. KEY RESULTS: Genotypes differed in their responsiveness to soil drying. The critical soil water potential at which plants started decreasing transpiration was related to a combination of above and belowground traits: genotypes with a higher maximum transpiration and plant hydraulic conductance as well as a smaller root and rhizosphere system closed stomata at less negative soil water potentials. CONCLUSIONS: Our results demonstrate the importance of belowground hydraulics for stomatal regulation and hence drought responsiveness during soil drying. Furthermore, this finding supports the hypothesis that stomata start to close when soil hydraulic conductivity drops at the root-soil interface.


Assuntos
Dessecação , Zea mays , Zea mays/genética , Genótipo , Fenótipo , Folhas de Planta/genética , Transpiração Vegetal , Solo , Estômatos de Plantas , Raízes de Plantas/genética
7.
Plant Cell Environ ; 45(10): 3122-3133, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35909089

RESUMO

Consequences of interactions between ectomycorrhizal fungi (EcMF) and non-mycorrhizal rhizosphere fungi (NMRF) for plant carbon (C) allocation belowground and nutrient cycling in soil remain unknown. To address this topic, we performed a mesocosm study with Norway spruce seedlings [Picea abies (L.) H. Karst] inoculated with EcMF, NMRF, or a mixture of both (MIX). 14 CO2 pulse labelling of spruce was applied to trace and visualize the 14 C incorporation into roots, rhizohyphosphere and hyphosphere. Activities and localization of enzymes involved in the C, nitrogen (N) and phosphorus (P) cycling were visualized using zymography. Spruce seedlings inoculated with EcMF and NMRF allocated more C to soils (EcMF: 10.7%; NMRF: 3.5% of total recovered C) compared to uninoculated control seedlings. The 14 C activity in the hyphosphere was highest for EcMF and lowest for NMRF. In the presence of both, NMRF and EcMF (MIX), the 14 C activity was 64% lower compared with EcMF inoculation alone. This suggests a suppressed C allocation via EcMF likely due to the competition between EcMF and NMRF for N and P. Furthermore, we observed 57% and 49% higher chitinase and leucine-aminopeptidase activities in the rhizohyphosphere of EcMF compared to the uninoculated control, respectively. In contrast, ß-glucosidase activity (14.3 nmol cm-2 h-1 ) was highest in NMRF likely because NMRF consumed rhizodeposits efficiently. This was further supported by that enzyme stoichiometry in soil with EcMF shifted to a higher investment of nutrient acquisition enzymes (e.g., chitinase, leucine-aminopeptidase, acid phosphatase) compared to NMRF inoculation, where investment in ß-glucosidase increased. In conclusion, the alleviation of EcMF from C limitation promotes higher activities of enzymes involved in the N and P cycle to cover the nutrient demand of EcMF and host seedlings. In contrast, C limitation of NMRF probably led to a shift in investment towards higher activities of enzymes involved in the C cycle.


Assuntos
Abies , Celulases , Quitinases , Micorrizas , Picea , Pinus , Aminopeptidases/metabolismo , Quitinases/metabolismo , Fungos , Leucina/metabolismo , Micorrizas/metabolismo , Picea/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Plântula/metabolismo , Solo
8.
Sci Rep ; 11(1): 20852, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675299

RESUMO

Drought and the availability of mineable phosphorus minerals used for fertilization are two of the important issues agriculture is facing in the future. High phosphorus availability in soils is necessary to maintain high agricultural yields. Drought is one of the major threats for terrestrial ecosystem performance and crop production in future. Among the measures proposed to cope with the upcoming challenges of intensifying drought stress and to decrease the need for phosphorus fertilizer application is the fertilization with silica (Si). Here we tested the importance of soil Si fertilization on wheat phosphorus concentration as well as wheat performance during drought at the field scale. Our data clearly showed a higher soil moisture for the Si fertilized plots. This higher soil moisture contributes to a better plant performance in terms of higher photosynthetic activity and later senescence as well as faster stomata responses ensuring higher productivity during drought periods. The plant phosphorus concentration was also higher in Si fertilized compared to control plots. Overall, Si fertilization or management of the soil Si pools seem to be a promising tool to maintain crop production under predicted longer and more serve droughts in the future and reduces phosphorus fertilizer requirements.

9.
Environ Sci Technol ; 55(17): 12075-12083, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34409832

RESUMO

Alternate wet-drying (AWD) and sulfate fertilization have been considered as effective methods for lowering CH4 emissions from paddy soils. However, there is a clear knowledge gap between field studies that focus on the quantification of emissions and laboratory studies that investigate mechanisms. To elucidate mechanisms of CH4 production and oxidation under field conditions, rice was planted in straw-amended mesocosms with or without sulfate fertilization under continuously flooded conditions (FL) or two wet-dry cycles. CO2 and CH4 concentrations in soil air and their natural C isotope compositions were measured at stem elongation, booting, and flowering stages. CH4 concentration reached 51 mg C L-1 at the flowering stage under FL, while it decreased to 0.04 mg C L-1 under AWD. Relative 13C enrichment in CH4 and depletion in CO2 under AWD indicated CH4 oxidation. Ample organic substrate supply may have reduced competition between sulfate-reducing bacteria and methanogenic archaea, and therefore, it explains the absence of a decrease in CH4 concentrations in sulfate treatments. 13C enrichment in CO2 over time (6 and 7‰ with and without sulfate fertilizers, respectively) under FL indicates continuous contribution of hydrogenotrophic methanogenesis to CH4 production with ongoing rice growth. Overall, AWD could more efficiently reduce CH4 production than sulfate fertilization in rice straw-amended paddy soils.


Assuntos
Oryza , Solo , Fertilização , Metano , Sulfatos
10.
Plant Cell Environ ; 44(10): 3336-3346, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302368

RESUMO

Various studies showed a decrease of drought stress specific parameters of plants after silicon (Si) fertilization. But all studies differed in soil Si concentration between the control and Si treatments. As amorphous silica (ASi) was recently found to cause a strong increase of water holding capacity and plant available water in soils, a combined effect of soil moisture and plant response due to Si addition was assumed. In this study, the influence of the soil Si content was excluded by using the same Si enriched soil for treatments of two rice lines, lsi1 mutant defective in Si uptake and its wild-type rice. Most plant parameters, such as nutrient contents, biomass, specific leaf area, specific root length, leaf water content and C allocation did not differ significantly between the genotypes neither under flooded conditions, nor under drought conditions. Only photosynthesis and stomatal conductance were slightly higher for the wild type in both drought and flooded treatments. Overall, our data showed that Si accumulation within the plant tissues has only a minor effect on plant performance under drought stress. Hence, existing studies should be reinterpreted in light of the fact that Si additions may increase soil water availability.


Assuntos
Secas , Oryza/fisiologia , Silício/farmacologia , Solo/química , Água/fisiologia , Silício/metabolismo
11.
Plant Cell Environ ; 44(4): 1231-1242, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33175402

RESUMO

Plant roots interact with rhizosphere microorganisms to accelerate soil organic matter (SOM) mineralization for nutrient acquisition. Root-mediated changes in SOM mineralization largely depend on root-derived carbon (root-C) input and soil nutrient status. Hence, intraspecific competition over plant development and spatiotemporal variability in the root-C input and nutrients uptake may modify SOM mineralization. To investigate the effect of intraspecific competition on SOM mineralization at three growth stages (heading, flowering, and ripening), we grew maize (C4 plant) under three planting densities on a C3 soil and determined in situ soil C- and N-mineralization by 13 C-natural abundance and 15 N-pool dilution approaches. From heading to ripening, soil C- and N-mineralization rates exhibit similar unimodal trends and were tightly coupled. The C-to-N-mineralization ratio (0.6 to 2.6) increased with N availability, indicating that an increase in N-mineralization with N depletion was driven by microorganisms mining N-rich SOM. With the intraspecific competition, plants increased specific root lengths as an efficient strategy to compete for resources. Root morphologic traits rather than root biomass per se were positively related to C- and N-mineralization. Overall, plant phenology and intraspecific competition controlled the intensity and mechanisms of soil C- and N- mineralization by the adaptation of root traits and nutrient mining.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Desenvolvimento Vegetal/fisiologia , Rizosfera , Ecologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Zea mays/fisiologia
12.
Mycorrhiza ; 30(6): 773-780, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32840665

RESUMO

Data for stable C and N isotope natural abundances of arbuscular mycorrhizal (AM) fungi are currently sparse, as fungal material is difficult to access for analysis. So far, isotope analyses have been limited to lipid compounds associated with fungal membranes or storage structures (biomarkers), fungal spores and soil hyphae. However, it remains unclear whether any of these components are an ideal substitute for intraradical AM hyphae as the functional nutrient trading organ. Thus, we isolated intraradical hyphae of the AM fungus Rhizophagus irregularis from roots of the grass Festuca ovina and the legume Medicago sativa via an enzymatic and a mechanical approach. In addition, extraradical hyphae were isolated from a sand-soil mix associated with each plant. All three approaches revealed comparable isotope signatures of R. irregularis hyphae. The hyphae were 13C- and 15N-enriched relative to leaves and roots irrespective of the plant partner, while they were enriched only in 15N compared with soil. The 13C enrichment of AM hyphae implies a plant carbohydrate source, whereby the enrichment was likely reduced by an additional plant lipid source. The 15N enrichment indicates the potential of AM fungi to gain nitrogen from an organic source. Our isotope signatures of the investigated AM fungus support recent findings for mycoheterotrophic plants which are suggested to mirror the associated AM fungi isotope composition. Stable isotope natural abundances of intraradical AM hyphae as the functional trading organ for bi-directional carbon-for-mineral nutrient exchanges complement data on spores and membrane biomarkers.


Assuntos
Glomeromycota , Micorrizas , Hifas , Isótopos , Raízes de Plantas
13.
Glob Chang Biol ; 24(1): 1-12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28752603

RESUMO

Despite its fundamental role for carbon (C) and nutrient cycling, rhizodeposition remains 'the hidden half of the hidden half': it is highly dynamic and rhizodeposits are rapidly incorporated into microorganisms, soil organic matter, and decomposed to CO2 . Therefore, rhizodeposition is rarely quantified and remains the most uncertain part of the soil C cycle and of C fluxes in terrestrial ecosystems. This review synthesizes and generalizes the literature on C inputs by rhizodeposition under crops and grasslands (281 data sets). The allocation dynamics of assimilated C (after 13 C-CO2 or 14 C-CO2 labeling of plants) were quantified within shoots, shoot respiration, roots, net rhizodeposition (i.e., C remaining in soil for longer periods), root-derived CO2 , and microorganisms. Partitioning of C pools and fluxes were used to extrapolate belowground C inputs via rhizodeposition to ecosystem level. Allocation from shoots to roots reaches a maximum within the first day after C assimilation. Annual crops retained more C (45% of assimilated 13 C or 14 C) in shoots than grasses (34%), mainly perennials, and allocated 1.5 times less C belowground. For crops, belowground C allocation was maximal during the first 1-2 months of growth and decreased very fast thereafter. For grasses, it peaked after 2-4 months and remained very high within the second year causing much longer allocation periods. Despite higher belowground C allocation by grasses (33%) than crops (21%), its distribution between various belowground pools remains very similar. Hence, the total C allocated belowground depends on the plant species, but its further fate is species independent. This review demonstrates that C partitioning can be used in various approaches, e.g., root sampling, CO2 flux measurements, to assess rhizodeposits' pools and fluxes at pot, plot, field and ecosystem scale and so, to close the most uncertain gap of the terrestrial C cycle.


Assuntos
Dióxido de Carbono , Carbono/química , Carbono/metabolismo , Ecossistema , Raízes de Plantas/metabolismo , Solo/química , Raízes de Plantas/química
14.
Ann Bot ; 121(1): 61-69, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29267846

RESUMO

Background and Aims: Although it is commonly accepted that root exudation enhances plant-microbial interactions in the rhizosphere, experimental data on the spatial distribution of exudates are scarce. Our hypothesis was that root hairs exude organic substances to enlarge the rhizosphere farther from the root surface. Methods: Barley (Hordeum vulgare 'Pallas' - wild type) and its root-hairless mutant (brb) were grown in rhizoboxes and labelled with 14CO2. A filter paper was placed on the soil surface to capture, image and quantify root exudates. Key Results: Plants with root hairs allocated more carbon (C) to roots (wild type: 13 %; brb: 8 % of assimilated 14C) and to rhizosheaths (wild type: 1.2 %; brb: 0.2 %), while hairless plants allocated more C to shoots (wild type: 65 %; brb: 75 %). Root hairs increased the radial rhizosphere extension three-fold, from 0.5 to 1.5 mm. Total exudation on filter paper was three times greater for wild type plants compared to the hairless mutant. Conclusion: Root hairs increase exudation and spatial rhizosphere extension, which probably enhance rhizosphere interactions and nutrient cycling in larger soil volumes. Root hairs may therefore be beneficial to plants under nutrient-limiting conditions. The greater C allocation below ground in the presence of root hairs may additionally foster C sequestration.


Assuntos
Carbono/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Hordeum/metabolismo , Solo/química
15.
Sci Total Environ ; 627: 1242-1252, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30857089

RESUMO

Hydrological cycle is expected to become the primary cause of ecosystem's degradation in near future under changing climate. Rain manipulation experiments under field conditions provide accurate picture on the responses of biotic processes to changed water availability for plants. A field experiment, mimicking expected changes in rain patterns, was established in a Mediterranean shrub community at Porto Conte, Italy, in 2001. In November 2011 Cistus monspeliensis, one of the dominating shrub species in the Mediterranean basin, was 13C labelled on plots subjected to extended rain shortage period and on control non manipulated plots. Carbon (C) allocation was traced by 13C dynamics in shoots, shoot-respired CO2, roots, microbial biomass, K2SO4-extractable C and CO2 respired from soil. Most of the recovered 13C (60%) was respired by shoots within 2weeks in control plots. In rain shortage treatment, 13C remained incorporated in aboveground plant parts. Residence time of 13C in leaves was longer under the rain shortage because less 13C was lost by shoot respiration and because 13C was re-allocated to leaves from woody tissues. The belowground C sink was weak (3-4% of recovered 13C) and independent on rain manipulation. Extended rain shortage promoted C exudation into rhizosphere soil in expense of roots. Together with lowered photosynthesis, this "save" economy of new C metabolites reduces the growing season under rain shortage resulting in decrease of shrub cover and C losses from the system on the long-term.


Assuntos
Sequestro de Carbono , Mudança Climática , Monitoramento Ambiental , Plantas , Carbono , Isótopos de Carbono , Secas , Ecossistema , Itália , Raízes de Plantas , Chuva , Rizosfera
16.
Am J Bot ; 99(7): 1133-45, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22753812

RESUMO

PREMISE OF THE STUDY: In addition to autotrophic and fully mycoheterotrophic representatives, the orchid family comprises species that at maturity obtain C and N partially from fungal sources. These partial mycoheterotrophs are often associated with fungi that simultaneously form ectomycorrhizas with trees. This study investigates mycorrhizal nutrition for orchids from the southwestern Australian biodiversity hotspot. METHODS: The mycorrhizal fungi of 35 green and one achlorophyllous orchid species were analyzed using molecular methods. Nutritional mode was identified for 27 species by C and N isotope abundance analysis in comparison to non-orchids from the same habitat. As a complementary approach, (13)CO(2) pulse labeling was applied to a subset of six orchid species to measure photosynthetic capacity. KEY RESULTS: Almost all orchids associated with rhizoctonia-forming fungi. Due to much higher than expected variation within the co-occurring nonorchid reference plants, the stable isotope approach proved challenging for assigning most orchids to a specialized nutritional mode; therefore, these orchids were classified as autotrophic at maturity. The (13)CO(2) pulse labeling confirmed full autotrophy for six selected species. Nonetheless, at least three orchid species (Gastrodia lacista, Prasophyllum elatum, Corybas recurvus) were identified as nutritionally distinctive from autotrophic orchids and reference plants. CONCLUSIONS: Despite the orchid-rich flora in southwestern Australia, partial mycoheterotrophy among these orchids is less common than in other parts of the world, most likely because most associate with saprotrophic fungi rather than ectomycorrhizal fungi.


Assuntos
Carbono/metabolismo , Micorrizas/fisiologia , Nitrogênio/metabolismo , Orchidaceae/microbiologia , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Clorofila/metabolismo , Análise por Conglomerados , Minerais/metabolismo , Isótopos de Nitrogênio/análise , Orchidaceae/metabolismo , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...