Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 7(1): 297, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901022

RESUMO

Zooplankton biomass data have been collected in Australian waters since the 1930s, yet most datasets have been unavailable to the research community. We have searched archives, scanned the primary and grey literature, and contacted researchers, to collate 49187 records of marine zooplankton biomass from waters around Australia (0-60°S, 110-160°E). Many of these datasets are relatively small, but when combined, they provide >85 years of zooplankton biomass data for Australian waters from 1932 to the present. Data have been standardised and all available metadata included. We have lodged this dataset with the Australian Ocean Data Network, allowing full public access. The Australian Zooplankton Biomass Database will be valuable for global change studies, research assessing trophic linkages, and for initialising and assessing biogeochemical and ecosystem models of lower trophic levels.


Assuntos
Biomassa , Zooplâncton , Animais , Austrália , Oceano Índico , Oceano Pacífico
2.
Zookeys ; (783): 17-36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275724

RESUMO

Two new species of small hydromedusae were found during routine monitoring in coastal waters of eastern Australia and are here described. The first, Melicertissaantrichardsoni Uribe-Palomino & Gershwin, sp. n., from Moreton Bay, Queensland, is placed in its genus because of its possession of both cordyli and eight-fold symmetry. It differs from its congeners in two conspicuous features: firstly, having small, oval split gonads located adjacent to the base of the stomach, and secondly, in its extremely small size at maturity (2 mm bell diameter, compared to the next smallest species at 7 mm). Moreover, it possesses a unique combination of other characters. This species appears to be endemic to Moreton Bay. The second new species, Paraloveniayongalensis Gershwin & Uribe-Palomino, sp. n., from the Great Barrier Reef, Queensland, is placed in its genus because of its two opposite normal tentacles and two opposite marginal clusters of cirri. It differs from its congeners primarily in a more rounded body than the others; the shape, length, and position of its short spindle-shaped, distal gonads; possession of subumbrellar nematocyst clusters; and possession of statocysts. These discoveries bring the total number of Melicertissa species to eight and the total number of Paralovenia species to three. The discovery of these two micromedusae underscores the need for further examination of the often-ignored minute and/or gelatinous fauna.

3.
Sci Data ; 5: 180018, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461516

RESUMO

Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.


Assuntos
Clorofila , Austrália , Bases de Dados Factuais , Ecossistema , Fitoplâncton , Água do Mar
5.
Sci Data ; 3: 160043, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328409

RESUMO

There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.


Assuntos
Bases de Dados Factuais , Fitoplâncton , Austrália , Biomassa , Mudança Climática , Ecossistema , Eutrofização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA