Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 138: 318-327, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929536

RESUMO

Fly ash from municipal solid waste incineration (MSWI-FA) contains leachable heavy metals. In the present study the correlations between heavy metal content, particle size, speciation distribution with respect to water leaching are investigated, using a combination of solid-state bulk analytical techniques, leaching treatments, sequential extractions and thermodynamic geochemical modelling. Among the analyzed heavy metals, Zn and Pb are the most abundant in any grain size class, followed by Cu, Cr, Cd and Ni, with concentration that tends to increase with a decrease of the grain size. The phase composition is constituted of salt (halite, sylvite, anhydrite and syngenite), which provide the main minerals regardless of the particle size class; calcite, quartz and gehlenite occur in comparatively lower amounts, while 50% wt is composed of amorphous fraction. Heavy metal leaching is strongly correlated to speciation distribution, and in particular to the fraction (F1) associated with salt, carbonate and weak surface sorption. Leaching from speciation due to surface complexation on Al/Fe (hydr)oxide becomes relevant at acidic regime. Particle size and heavy metal content, in turn, moderately correlate with leaching. The F1-speciation as a function of particle size does not exhibit a definite trend shared by all heavy metals under investigation. This suggests that i) differences in speciation distribution, rather than bare heavy metal content or particle size, govern leaching from MSWI-FA; ii) F1 can be regarded as a marker of the potential heavy metal leaching; iii) a comparatively modest efficiency in managing MSWI-FA is expected from grain size separation strategies.


Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono , Cinza de Carvão , Incineração , Metais Pesados/análise , Tamanho da Partícula , Material Particulado , Resíduos Sólidos
2.
Sci Rep ; 11(1): 11829, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088914

RESUMO

The occurrence of phlogopite and amphibole in mantle ultramafic rocks is widely accepted as the modal effect of metasomatism in the upper mantle. However, their simultaneous formation during metasomatic events and the related sub-solidus equilibrium with the peridotite has not been extensively studied. In this work, we discuss the geochemical conditions at which the pargasite-phlogopite assemblage becomes stable, through the investigation of two mantle xenoliths from Mount Leura (Victoria State, Australia) that bear phlogopite and the phlogopite + amphibole (pargasite) pair disseminated in a harzburgite matrix. Combining a mineralogical study and thermodynamic modelling, we predict that the P-T locus of the equilibrium reaction pargasite + forsterite = Na-phlogopite + 2 diopside + spinel, over the range 1.3-3.0 GPa/540-1500 K, yields a negative Clapeyron slope of -0.003 GPa K-1 (on average). The intersection of the P-T locus of supposed equilibrium with the new mantle geotherm calculated in this work allowed us to state that the Mount Leura xenoliths achieved equilibrium at 2.3 GPa /1190 K, that represents a plausible depth of ~ 70 km. Metasomatic K-Na-OH rich fluids stabilize hydrous phases. This has been modelled by the following equilibrium equation: 2 (K,Na)-phlogopite + forsterite = 7/2 enstatite + spinel + fluid (components: Na2O,K2O,H2O). Using quantum-mechanics, semi-empirical potentials, lattice dynamics and observed thermo-elastic data, we concluded that K-Na-OH rich fluids are not effective metasomatic agents to convey alkali species across the upper mantle, as the fluids are highly reactive with the ultramafic system and favour the rapid formation of phlogopite and amphibole. In addition, oxygen fugacity estimates of the Mount Leura mantle xenoliths [Δ(FMQ) = -1.97 ± 0.35; -1.83 ± 0.36] indicate a more reducing mantle environment than what is expected from the occurrence of phlogopite and amphibole in spinel-bearing peridotites. This is accounted for by our model of full molecular dissociation of the fluid and incorporation of the O-H-K-Na species into (OH)-K-Na-bearing mineral phases (phlogopite and amphibole), that leads to a peridotite metasomatized ambient characterized by reduced oxygen fugacity.

3.
Sci Total Environ ; 666: 1232-1244, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970488

RESUMO

The increase in the amount of carbon dioxide (CO2) emissions related to many anthropic activities is a persistent and growing problem. During the last years, many solutions have been set out, none of them being the ultimate one. Investigators agree on the need of a synergic approach to the problem, in terms of many complementary methods of sequestration that, combined with the reduction of production, will be able to decrease the concentration of the CO2 in the atmosphere. In this work, we explore the use of a green reaction to trap the CO2 into a stable crystalline phase (weddellite) resorting to a multidisciplinary approach. CO2 is reduced and precipitated as calcium oxalate through vitamin C as a sacrificial reductant. Calcium oxalate crystals obtained show a startling good quality that increases their already great stability over a wide chemical and physical conditions' range.

4.
Waste Manag ; 84: 340-354, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30691909

RESUMO

The aim of this study is twofold: (i) characterization of the bottom ashes from the Incinerator plant of the city of Turin (northern Italy), in terms of their chemical/phase compositions and capacity to release heavy metals in leachates, as a function of particle size; (ii) investigation of thermal treatments' efficacy to promote inertization of the same bottom ashes, exploring time-temperature ranges with t ≤ 6 h and T ≤ 1000 °C. Special attention is paid to macro-sampling techniques in order to have samples that are representative of the average bottom ashes production. Micro-XRF, ICP-OES, SEM-EDS, Ion Chromatography and X-ray powder diffraction were used to investigate bottom ashes and leachates. Bottom ashes are mainly constituted by an amorphous phase, ∼66-97 wt%, regardless of particle size; the remaining phases are quartz, calcite, Fe-oxides, melilite and other minor crystalline materials. The amorphous phase exhibits a relevant dependence on particle size, and undergoes dissolution in water up to 20 wt%, thus being the most important component in affecting chemical species release. The smaller the bottom ashes' particle size, the more the heavy metals (major species: Zn, Cu, Ti, Pb) and calcium contents increase, whereas silicon's decreases. Electrolytic current observations in combination with phase/chemical composition and metals release as a function of particle size, suggest that bottom ashes partition into two classes, i.e. ≥1 and <1 mm, for inertization purposes. Thermal treatments exhibit partial efficacy to curb heavy metals mobility: whilst they reduce Cu release, they lead to a inverse effect in the case of Cr.


Assuntos
Cinza de Carvão , Metais Pesados , Cidades , Incineração , Itália , Tamanho da Partícula
5.
Acta Crystallogr A Found Adv ; 74(Pt 2): 102-111, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29493539

RESUMO

The critical points analysis of electron density, i.e. ρ(x), from ab initio calculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points, i.e. such that ∇ρ(xc) = 0 and λ1, λ2, λ3 ≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) at xc], towards degenerate critical points, i.e. ∇ρ(xc) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood of xc and allows one to rationalize the occurrence of instability in terms of electron-density topology and Gibbs energy. The phase/state transitions that TiO2 (rutile structure), MgO (periclase structure) and Al2O3 (corundum structure) undergo because of pressure and/or temperature are here discussed. An agreement of 3-5% is observed between the theoretical model and experimental pressure/temperature of transformation.

6.
J Phys Chem B ; 120(9): 2526-37, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26848740

RESUMO

An empirical potential structure refinement of neutron and X-ray diffraction data combined with extended absorption fine structure evidence has been applied to the investigation of two distinct sets of complex aluminosilicate glasses containing different quantities of zinc. Data come from (i) neutron and X-ray total scattering experiments, which have been performed at the ISIS neutron spallation source (SANDALS beamline) and at the European Synchrotron Radiation Facility (ID11 beamline), and (ii) EXAFS experiments which have been performed at the European Synchrotron Radiation Facility (BM23 beamline). By careful examination of the modeled ensemble of atoms, a wide range of structural information has been extracted: coordination numbers, bond distances, cluster sizes, type of oxygen sharing, and the preference of large cations to adopt a charge-compensating role. The first series of glasses, which is characterized by a fixed network modifier element content (i.e., Na), shows how the introduction of Zn at the expense of Si and Al network forming elements does not significantly alter the polymerization degree, as a result of its dominant 4-fold coordination. In the case of the second series, which is characterized by fixed network forming element content (i.e., Si and Al), it is shown how the replacement of a network modifier element (i.e., Ca) with the introduction of Zn does not change the propensity of Zn to be mainly 4-fold coordinated by promoting the network. Where appropriate the experimental results have been compared with classical theoretical approaches such as stoichiometric models based on Zachariasen's rules and computational routines.

7.
J Environ Manage ; 124: 100-7, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23624427

RESUMO

The effects of soda-lime waste glass, from the recovery of bottle glass cullet, in partial replacement of Na-feldspar for sanitary-ware ceramic production are discussed. Attention is paid to the mullite growth kinetics and to the macroscopic properties of the final output, the latter ones depending on the developed micro-structures and vitrification grade. Measurements have been performed by in situ high temperature X-ray powder diffraction, scanning electron microscopy, thermal dilatometry, water absorption and mechanical testing. Glass substituting feldspar from 30 to 50 wt% allows one (i) to accelerate the mullite growth reaction kinetics, and (ii) to achieve macroscopic features of the ceramic output that comply with the latest technical requirements. The introduction of waste glass leads to (i) a general saving of fuel and reduction of the CO2-emissions during the firing stage, (ii) a preservation of mineral resources in terms of feldspars, and (iii) an efficient management of the bottle glass refuse by readdressing a part of it in the sanitary-ware manufacturing.


Assuntos
Compostos de Cálcio/química , Cerâmica/química , Vidro , Óxidos/química , Dióxido de Silício/química , Hidróxido de Sódio/química , Cinética , Microscopia Eletrônica de Varredura , Difração de Pó
8.
J Phys Chem B ; 116(43): 13114-23, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23043513

RESUMO

Amorphous materials became significantly important and more widely studied during the last few decades, due the their increasingly widespread applications in materials science and technology. Their local structure seems to have a very strong bond with those properties: in this paper, the local structure of Si-Al-Ca-Na-O glasses is studied by means of total scattering. EPSR simulations, coupling neutron, and X-ray data have been used to study glass samples (as a function of composition), with a composition close to the one used in their technological applications (ceramic glazes), providing a consistent structural model. The disordered structure of these materials has been evaluated in terms of network-forming/modifier elements. The network-forming elements (silicon and aluminum) show coordination numbers and bond angles that are consistent with a tetrahedral arrangement. In contrast, network-modifying elements (Ca and Na, whose content is different in all samples) depolymerize the network, increasing the number of nonbridging oxygens. This structural information is required to rationalize many important technological properties of these materials, such as the glass transition temperatures and thermal expansion, that control their efficiency as glazes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA