Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 49(11): 1251-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22000047

RESUMO

The seedless grapes BRS Clara and BRS Morena, developed in Brazil, are currently growing in popularity due to their premium texture and taste. However, there are no reports on the polyphenoloxidase (PPO) from these cultivars. In this paper, active and latent PPO from BRS Clara and BRS Morena seedless grapes were extracted using the non-ionic detergents Triton-X-100 (active) and Triton-X-114 (latent), and their catecholase activities were characterized. The PPO extracted using Triton-X-110 exhibited maximum activities at pH 6.0 and at 25 °C. Above 30 °C, a gradual decline in activities was noted, with complete inactivation at 60 °C. The PPO from grapes extracted with Triton-X-114 was activated with 0.2% of the ionic detergent sodium dodecyl sulfate (SDS), and exhibited maximum activities at pH 5.5 and at 30 °C. It was stable until the temperature reached 60 °C.


Assuntos
Catecol Oxidase/isolamento & purificação , Frutas/enzimologia , Extratos Vegetais/isolamento & purificação , Vitis/enzimologia , Brasil , Catecol Oxidase/química , Catecol Oxidase/metabolismo , Detergentes , Ativação Enzimática , Estabilidade Enzimática , Frutas/química , Frutas/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/química , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Cinética , Octoxinol , Fenóis/análise , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polietilenoglicóis , Dodecilsulfato de Sódio , Temperatura , Vitis/química , Vitis/metabolismo
2.
Appl Biochem Biotechnol ; 163(1): 14-24, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20414741

RESUMO

Three mutations, Ser54→Pro, Thr314→Ala, and His415→Tyr, were identified in Aspergillus awamori glucoamylase gene expressed by Saccharomyces cerevisiae. The mutant glucoamylase (GA) was substantially more thermostable than a wild-type GA at 70 °C, with a 3.0 KJ mol(-1) increase in the free energy of thermo-inactivation. The effect of starch from different botanical sources on the production of this GA was measured in liquid fermentation using commercial soluble starch, cassava, potato, and corn as the carbon source. The best substrate for GA production was the potato starch showing an enzymatic activity of 6.6 U/mL. The commercial soluble starch was also a good substrate for the enzyme production with 6.3 U/mL, followed by cassava starch and corn starch with 5.9 and 3.0 U/mL, respectively. These results showed a significant difference on GA production related to the carbon source employed. The mutant GA was purified by acarbose-Sepharose affinity chromatography; the estimated molecular mass was 100 kDa. The mutant GA exhibited optimum activity at pH 4.5 and an optimum temperature of 65 °C.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glucana 1,4-alfa-Glucosidase/química , Glucana 1,4-alfa-Glucosidase/metabolismo , Microbiologia Industrial/métodos , Mutação , Aspergillus/química , Aspergillus/genética , Técnicas de Cultura , Estabilidade Enzimática , Fermentação , Proteínas Fúngicas/genética , Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Temperatura Alta , Cinética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
3.
Appl Biochem Biotechnol ; 161(1-8): 333-46, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19898784

RESUMO

Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by beta-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 degrees C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0-5.5. They were stable in the pH range 5.0-10.0 and 5.5-8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55 and 60 degrees C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 degrees C.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Xilano Endo-1,3-beta-Xilosidase/metabolismo , Proteínas de Bactérias/classificação , Brasil , Fermentação , Proteínas Fúngicas/classificação , Microbiologia Industrial , Filogenia , Polissacarídeos/metabolismo , Microbiologia do Solo , Xilanos/metabolismo
4.
Braz. j. microbiol ; 39(1): 108-114, Jan.-Mar. 2008. graf, tab
Artigo em Inglês | LILACS | ID: lil-480685

RESUMO

Glucoamylase is widely used in the food industry to produce high glucose syrup, and also in fermentation processes for production beer and ethanol. In this work the productivity of the glucoamylase of Aspergillus awamori expressed by the yeast Saccharomyces cerevisiae, produced in submerged fermentation using different starches, was evaluated and characterized physico-chemically. The enzyme presented high specific activity, 13.8 U/mgprotein or 2.9 U/mgbiomass, after 48 h of fermentation using soluble starch as substrate. Glucoamylase presented optimum activity at temperature of 55ºC, and, in the substratum absence, the thermostability was for 1h at 50ºC. The optimum pH of activity was pH 3.5 - 4.0 and the pH stability between 5.0 and 7.0. The half life at 65ºC was at 30.2 min, and the thermal energy of denaturation was 234.3 KJ mol-1. The hydrolysis of different substrate showed the enzyme's preference for the substrate with a larger polymerization degree. The gelatinized corn starch was the substratum most susceptible to the enzymatic action.


A glucoamilase é amplamente utilizada na indústria de alimentos no processamento do amido para a produção de xarope com alto teor de glicose e também muito empregada nos processos de fermentação para produção de cerveja e etanol. Neste trabalho a glucoamilase de Aspergillus awamori expressa em Saccharomyces cerevisiae produzida sob fermentação líquida foi avaliada quanto à produtividade em diferentes amidos e caracterizada físico-quimicamente. A enzima apresentou alta atividade específica de 13,8 U/mg proteína e de 2,9 U/mg biomassa ao final de 48 h de fermentação em meio contendo amido solúvel. A glucoamilase apresentou temperatura ótima de atividade a 55ºC, e temperatura de desnaturação térmica na ausência de substrato por 1h a 50ºC. O pH ótimo de atividade foi na faixa de 3,5 - 4,0 e a estabilidade ao pH entre os valores 5,0 e 7,0. A meia vida a 65ºC foi 30,2 min., e a energia de desnaturação foi de 234.3 KJ mol-1. A hidrólise em diferentes substratos mostrou a preferência da enzima pelos substratos com maior grau de polimerização, sendo o amido de milho gelatinizado o substrato preferencial à ação enzimática.


Assuntos
Aspergillus/enzimologia , Aspergillus/isolamento & purificação , Carbono/análise , Fermentação , /análise , Técnicas In Vitro , Amidos e Féculas , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/isolamento & purificação , Métodos
5.
Braz J Microbiol ; 39(1): 108-14, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24031189

RESUMO

Glucoamylase is widely used in the food industry to produce high glucose syrup, and also in fermentation processes for production beer and ethanol. In this work the productivity of the glucoamylase of Aspergillus awamori expressed by the yeast Saccharomyces cerevisiae, produced in submerged fermentation using different starches, was evaluated and characterized physico-chemically. The enzyme presented high specific activity, 13.8 U/mgprotein or 2.9 U/mgbiomass, after 48 h of fermentation using soluble starch as substrate. Glucoamylase presented optimum activity at temperature of 55°C, and, in the substratum absence, the thermostability was for 1h at 50°C. The optimum pH of activity was pH 3.5 - 4.0 and the pH stability between 5.0 and 7.0. The half life at 65°C was at 30.2 min, and the thermal energy of denaturation was 234.3 KJ mol(-1). The hydrolysis of different substrate showed the enzyme's preference for the substrate with a larger polymerization degree. The gelatinized corn starch was the substratum most susceptible to the enzymatic action.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...