Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Breath Res ; 14(4): 046010, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32969351

RESUMO

Inhalation of smoke is shown to be associated with adverse respiratory outcomes in firefighters. Due to invasiveness of procedures to obtain airways lining fluid, the immediate responses of the target organ (i.e. lung) are secondarily assessed through biomarkers in blood and urine. The objective of this study was to identify changes in metabolic profile of exhaled breath condensate (EBC) and lung function of firefighters exposed to wildfires smoke. A total of 29 subjects were studied over 16 events; 14 of these subjects provided cross-shift EBC samples. The predominant types of non-exchangeable hydrogen in EBC were saturated oxygenated hydrogen, aliphatic alkyl and allylic. Non-exchangeable allylic and oxygenated hydrogen concentrations decreased in post-exposure EBC samples. Longer exposures were correlated with increased abundance of oxidized carbon in ketones, acids and esters. Post-exposure lung function declines (forced expiratory volume in 1 s (FEV1): 0.08 l, forced vital capacity (FVC): 0.07 l, FEV1/FVC: 0.03 l, peak expiratory flow (PEF): 0.39 l s-1) indicated airways inflammation. They were related to exposure intensity (FEV1 and FVC) and exposure duration (PEF). This study showed that EBC characterization of non-exchangeable hydrogen types by NMR may provide insights on EBC molecular compositions in response to smoke inhalation and facilitate targeted analysis to identify specific biomarkers.


Assuntos
Testes Respiratórios/métodos , Expiração , Bombeiros , Hidrogênio/análise , Pulmão/fisiologia , Testes de Função Respiratória , Incêndios Florestais , Adulto , Biomarcadores/análise , Biomassa , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Espectroscopia de Prótons por Ressonância Magnética , Capacidade Vital
2.
J Biol Chem ; 285(42): 32512-21, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20702412

RESUMO

Oral squamous cell carcinoma (OSCC) is a major health problem worldwide, and patients have a particularly poor 5-year survival rate. Thus, identification of the molecular targets in OSCC and subsequent innovative therapies are greatly needed. Prolonged exposure to alcohol, tobacco, and pathogenic agents are known risk factors and have suggested that chronic inflammation may represent a potential common denominator in the development of OSCC. Microarray analysis of gene expression in OSCC cell lines with high basal NF-κB activity and OSCC patient samples identified dysregulation of many genes involved in inflammation, wound healing, angiogenesis, and growth regulation. In particular IL-8, CCL5, STAT1, and VEGF gene expression was up-regulated in OSCC. Moreover, IL-8 protein levels were significantly higher in OSCC cell lines as compared with normal human oral keratinocytes. Targeting IL-8 expression by siRNA significantly reduced the survival of OSCC cells, indicating that it plays an important role in OSCC development and/or progression. Inhibiting the inflammatory pathway by aspirin and the proteasome/NF-κB pathway by bortezomib resulted in marked reduction in cell viability in OSCC lines. Taken together our studies indicate a strong link between inflammation and OSCC development and reveal IL-8 as a potential mediator. Treatment based on prevention of general inflammation and/or the NF-κB pathway shows promise in OSCCs.


Assuntos
Biomarcadores/metabolismo , Carcinoma de Células Escamosas , Inflamação/genética , Neoplasias Bucais , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/uso terapêutico , Aspirina/uso terapêutico , Ácidos Borônicos/uso terapêutico , Bortezomib , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Células Cultivadas , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Interleucina-8/genética , Interleucina-8/imunologia , Análise em Microsséries , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/imunologia , NF-kappa B/metabolismo , Pirazinas/uso terapêutico , RNA Interferente Pequeno/metabolismo
3.
J Lipid Res ; 49(4): 724-37, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18187403

RESUMO

Cytosolic phospholipase A(2) (cPLA(2)) is activated by phosphorylation at serine-505 (S505) by extracellular regulated kinase 1/2 (ERK1/2). However, rat brain calcium/calmodulin-dependent kinase II (CaMKII) phosphorylates recombinant cPLA(2) at serine-515 (S515) and increases its activity in vitro. We have studied the sites of cPLA(2) phosphorylation and their significance in arachidonic acid (AA) release in response to norepinephrine (NE) in vivo in rabbit vascular smooth muscle cells (VSMCs) using specific anti-phospho-S515- and -S505 cPLA(2) antibodies and by mutagenesis of S515 and S505 to alanine. NE increased the phosphorylation of cPLA(2) at S515, followed by phosphorylation of ERK1/2 and consequently phosphorylation of cPLA(2) at S505. The CaMKII inhibitor 2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzene-sulfonyl)]amino-N-(4-chlorocinnamyl)-methylbenzylamine attenuated cPLA(2) at S515 and S505, whereas the ERK1/2 inhibitor U0126 reduced phosphorylation at S505 but not at S515. NE in cells transduced with adenovirus carrying enhanced cyan fluorescent protein cPLA(2) wild type caused phosphorylation at S515 and S505 and increased AA release. Expression of the S515A mutant in VSMCs reduced the phosphorylation of S505, ERK1/2, and AA release in response to NE. Transduction with a double mutant (S515A/S505A) blocked the phosphorylation of cPLA(2) and AA release. These data suggest that the NE-stimulated phosphorylation of cPLA(2) at S515 is required for the phosphorylation of S505 by ERK1/2 and that both sites of phosphorylation are important for AA release in VSMCs.


Assuntos
Ácido Araquidônico/metabolismo , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/metabolismo , Fosfolipases A2 Citosólicas/metabolismo , Fosfosserina/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Artérias/efeitos dos fármacos , Artérias/enzimologia , Artérias/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Genes Reporter/genética , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Norepinefrina/farmacologia , Fosfolipases A2 Citosólicas/genética , Fosfolipases A2 Citosólicas/imunologia , Fosforilação , Transporte Proteico , Coelhos
4.
Am J Physiol Heart Circ Physiol ; 290(1): H46-54, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16113073

RESUMO

ANG II stimulates phospholipase D (PLD) activity and growth of vascular smooth muscle cells (VSMC). The atypical protein kinase C-zeta (PKCzeta) plays a central role in the regulation of cell survival and proliferation. This study was conducted to determine the relationship between ANG II-induced activation of PKCzeta and PLD and their implication in VSMC adhesion, spreading, and hypertrophy. ANG II stimulated PKCzeta activity with maximal activation at 30 s followed by a decline in its activity to 45% above basal at 5 min. Inhibition of PKCzeta activity with a myristoylated pseudosubstrate peptide or overexpression of a kinase-inactive form of PKCzeta decreased ANG II-induced PLD activity. Moreover, depletion of PKCzeta with selective antisense oligonucleotides also decreased ANG II-induced PLD activity. Interaction between PLD2 and PKCzeta in VSMC was detected by coimmunoprecipitation. ANG II-induced PLD activity was inhibited by the primary alcohol n-butanol but not the tertiary alcohol t-butanol. The functional significance of PKCzeta and PLD2 in VSMC adhesion, spreading, and hypertrophy was investigated. Inhibition of PKCzeta and PLD2 activity or expression attenuated VSMC adhesion to collagen I and ANG II-induced cell spreading and hypertrophy. These results demonstrate that ANG II-induced PLD activation is regulated by PKCzeta and suggest a crucial role of PKCzeta-dependent PLD2 in VSMC functions such as adhesion, spreading, and hypertrophy, which are associated with the pathogenesis of atherosclerosis and malignant hypertension.


Assuntos
Angiotensina II/farmacologia , Músculo Liso Vascular/fisiologia , Fosfolipase D/metabolismo , Proteína Quinase C/fisiologia , 1-Butanol/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Ativação Enzimática , Hipertrofia/induzido quimicamente , Hipertrofia/fisiopatologia , Masculino , Músculo Liso Vascular/citologia , Fosfolipase D/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
5.
J Pharmacol Exp Ther ; 313(3): 1017-26, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15705737

RESUMO

Cytosolic phospholipase A(2) (cPLA(2)) is activated and translocated to the nuclear envelope by various vasoactive agents, including norepinephrine (NE), and releases arachidonic acid (AA) from tissue phospholipids. We previously demonstrated that NE-induced cPLA(2) translocation to the nuclear envelope is mediated via its phosphorylation by calcium/calmodulin-dependent kinase-II in rabbit vascular smooth muscle cells (VSMCs). Cytoskeletal structures actin and microtubule filaments have been implicated in the trafficking of proteins to various cellular sites. This study was conducted to investigate the contribution of actin and microtubule filaments to cPLA(2) translocation to the nuclear envelope and its activation by NE in rabbit VSMCs. NE (10 microM) caused cPLA(2) translocation to the nuclear envelope as determined by immunofluorescence. Cytochalasin D (CD; 0.5 microM) and latrunculin A (LA; 0.5 microM) that disrupted actin filaments, blocked cPLA(2) translocation elicited by NE. On the other hand, disruption of microtubule filaments by 10 microM colchicine did not block NE-induced cPLA(2) translocation to the nuclear envelope. CD and LA did not inhibit NE-induced increase in cytosolic calcium and cPLA(2) activity, determined from the hydrolysis of l-1-[(14)C]arachidonyl phosphatidylcholine and release of AA. Coimmunoprecipitation studies showed an association of actin with cPLA(2), which was not altered by CD or LA. Far-Western analysis showed that cPLA(2) interacts directly with actin. Our data suggest that NE-induced cPLA(2) translocation to the nuclear envelope requires an intact actin but not microtubule filaments and that cPLA(2) phosphorylation and activation and AA release are independent of its translocation to the nuclear envelope in rabbit VSMCs.


Assuntos
Actinas/fisiologia , Citosol/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Norepinefrina/farmacologia , Fosfolipases A/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Ácido Araquidônico/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Cães , Ativação Enzimática/efeitos dos fármacos , Músculo Liso Vascular/citologia , Membrana Nuclear/enzimologia , Fosfolipases A2 , Fosforilação , Transporte Proteico , Coelhos
6.
Hypertension ; 41(3 Pt 2): 794-800, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12623998

RESUMO

Norepinephrine (NE) stimulates phospholipase D (PLD) activity and cell proliferation in vascular smooth muscle cells (VSMCs). The objective of this study was to determine the contribution of PKC-zeta to NE-induced PLD activation and cell proliferation in VSMCs. PLD activity was measured by the formation of [3H]phosphatidylethanol in VSMCs labeled with [3H]oleic acid and exposed to ethanol. A high basal PLD activity was detected, and NE increased PLD activity over basal by 70%. This increase was abolished by the broad-range PKC inhibitor Ro 31-8220 (1 micromol/L, 30 minutes) and myristoylated PKC-zeta pseudosubstrate peptide inhibitor (25 micromol/L, 1 hour). Transfection of VSMCs with PKC-zeta antisense, but not sense, oligonucleotides, which reduced PKC-zeta protein level and basal PLD activity, caused a 92% decrease in NE-induced PLD activation. NE-induced increase in PLD activity was also reduced by 61% in cells transfected with kinase-deficient FLAG-T410A-PKC-zeta plasmid but not in those transfected with wild-type PKC-zeta. NE increased immunoprecipitable PKC-zeta activity and phosphorylation, reaching a maximum at 2 and 5 minutes, respectively. NE-induced increase in PKC-zeta activity was inhibited by Ro 31-8220 and by the pseudosubstrate inhibitor. Treatment of VSMCs for 48 hours with PKC-zeta antisense, but not sense, oligonucleotides also inhibited basal and NE-stimulated cell proliferation by 54% and 57%, respectively, as measured by [3H]thymidine incorporation. The inhibitor of PLD activity n-butanol, but not its inactive analog tert-butanol, also reduced the basal and blocked NE-induced cell proliferation. These data suggest that PKC-zeta mediates PLD activation and cell proliferation elicited by NE in rabbit VSMCs.


Assuntos
Músculo Liso Vascular/enzimologia , Norepinefrina/farmacologia , Fosfolipase D/metabolismo , Proteína Quinase C/fisiologia , Animais , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fosforilação/efeitos dos fármacos , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA