Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3832, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123227

RESUMO

Ceramides (Cer) are essential components of the skin permeability barrier. To probe the role of Cer polar head groups involved in the interfacial hydrogen bonding, the N-lignoceroyl sphingosine polar head was modified by removing the hydroxyls in C-1 (1-deoxy-Cer) or C-3 positions (3-deoxy-Cer) and by N-methylation of amide group (N-Me-Cer). Multilamellar skin lipid models were prepared as equimolar mixtures of Cer, lignoceric acid and cholesterol, with 5 wt% cholesteryl sulfate. In the 1-deoxy-Cer-based models, the lipid species were separated into highly ordered domains (as found by X-ray diffraction and infrared spectroscopy) resulting in similar water loss but 4-5-fold higher permeability to model substances compared to control with natural Cer. In contrast, 3-deoxy-Cer did not change lipid chain order but promoted the formation of a well-organized structure with a 10.8 nm repeat period. Yet both lipid models comprising deoxy-Cer had similar permeabilities to all markers. N-Methylation of Cer decreased lipid chain order, led to phase separation, and improved cholesterol miscibility in the lipid membranes, resulting in 3-fold increased water loss and 10-fold increased permeability to model compounds compared to control. Thus, the C-1 and C-3 hydroxyls and amide group, which are common to all Cer subclasses, considerably affect lipid miscibility and chain order, formation of periodical nanostructures, and permeability of the skin barrier lipid models.


Assuntos
Ceramidas/química , Ceramidas/metabolismo , Membranas Artificiais , Pele/metabolismo , Membrana Celular/metabolismo , Permeabilidade , Transição de Fase , Água/metabolismo
2.
Biophys Chem ; 224: 20-31, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28363088

RESUMO

The Stratum corneum (SC) prevents water loss from the body and absorption of chemicals. SC intercellular spaces contain ceramides (Cer), free fatty acids (FFA), cholesterol (Chol) and cholesteryl sulfate (CholS). Cer with "very long" acyl chains (for example, N-lignoceroyl-sphingosine, CerNS24) are important for skin barrier function, whereas increased levels of "long" acyl Cer (for example, N-palmitoyl-sphingosine, CerNS16) occur in patients suffering from atopic eczema or psoriasis. We studied the impact of the replacement of CerNS24 by CerNS16 on the barrier properties and microstructure of model SC lipid membranes composed of Cer/FFA/Chol/CholS. Membranes containing the long CerNS16 were significantly more permeable to water (by 38-53%), theophylline (by 50-55%) and indomethacin (by 83-120%) than those containing the very long CerNS24 (either with lignoceric acid or a mixture of long to very long chain FFA). Langmuir monolayers with CerNS24 were more condensed than with CerNS16 and atomic force microscopy showed differences in domain formation. X-ray powder diffraction revealed that CerNS24-based membranes formed one lamellar phase and separated Chol, whereas the CerNS16-based membranes formed up to three phases and Chol. These results suggest that replacement of CerNS24 by CerNS16 has a direct negative impact on membrane structure and permeability.


Assuntos
Ceramidas/química , Epiderme/química , Lipídeos de Membrana/química , Colesterol , Ésteres do Colesterol , Epiderme/metabolismo , Ácidos Graxos , Humanos , Microscopia de Força Atômica , Permeabilidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...