Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 4(1): 58, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532017

RESUMO

BACKGROUND: Natural cytokines are poorly suited as therapeutics for systemic administration due to suboptimal pharmacological and pharmacokinetic (PK) properties. Recombinant human interleukin-2 (rhIL-2) has shown promise for treatment of autoimmune (AI) disorders yet exhibits short systemic half-life and opposing immune responses that negate an appropriate therapeutic index. METHODS: A semi-synthetic microbial technology platform was used to engineer a site-specifically pegylated form of rhIL-2 with enhanced PK, specificity for induction of immune-suppressive regulatory CD4 + T cells (Tregs), and reduced stimulation of off-target effector T and NK cells. A library of rhIL-2 molecules was constructed with single site-specific, biorthogonal chemistry-compatible non-canonical amino acids installed near the interface where IL-2 engages its cognate receptor ßγ (IL-2Rßγ) signaling complex. Biorthogonal site-specific pegylation and functional screening identified variants that retained engagement of the IL-2Rα chain with attenuated potency at the IL-2Rßγ complex. RESULTS: Phenotypic screening in mouse identifies SAR444336 (SAR'336; formerly known as THOR-809), rhIL-2 pegylated at H16, as a potential development candidate that specifically expands peripheral CD4+ Tregs with upregulation of markers that correlate with their suppressive function including FoxP3, ICOS and Helios, yet minimally expands CD8 + T or NK cells. In non-human primate, administration of SAR'336 also induces dose-dependent expansion of Tregs and upregulated suppressive markers without significant expansion of CD8 + T or NK cells. SAR'336 administration reduces inflammation in a delayed-type hypersensitivity mouse model, potently suppressing CD4+ and CD8 + T cell proliferation. CONCLUSION: SAR'336 is a specific Treg activator, supporting its further development for the treatment of AI diseases.


Interleukin-2 (IL-2) is a protein that functions as a master regulator of immune responses. A key function of IL-2 is the stimulation of immune-regulatory cells that suppress autoimmune disease, which occurs when the body's immune system mistakenly attacks healthy tissues. However, therapeutic use of IL-2 is limited by its short duration of action and incomplete selectivity for immune-suppressive cells over off-target immune-stimulatory cells. We employ a platform that we have previously developed, which is a bacterial organism with an expanded DNA code, to identify a new version of IL-2, SAR444336 (SAR'336), with an extended duration of activity and increased selectivity for immune-suppressive cells. In mice and monkeys, SAR'336 was a specific activator of immune suppression, with minimal effect on immune cells that stimulate autoimmunity. Our results support further development of SAR'336 for treatment of autoimmune disorders.

2.
Nat Commun ; 12(1): 4785, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373459

RESUMO

The implementation of applied engineering principles to create synthetic biological systems promises to revolutionize medicine, but application of fundamentally redesigned organisms has thus far not impacted practical drug development. Here we utilize an engineered microbial organism with a six-letter semi-synthetic DNA code to generate a library of site-specific, click chemistry compatible amino acid substitutions in the human cytokine IL-2. Targeted covalent modification of IL-2 variants with PEG polymers and screening identifies compounds with distinct IL-2 receptor specificities and improved pharmacological properties. One variant, termed THOR-707, selectively engages the IL-2 receptor beta/gamma complex without engagement of the IL-2 receptor alpha. In mice, administration of THOR-707 results in large-scale activation and amplification of CD8+ T cells and NK cells, without Treg expansion characteristic of IL-2. In syngeneic B16-F10 tumor-bearing mice, THOR-707 enhances drug accumulation in the tumor tissue, stimulates tumor-infiltrating CD8+ T and NK cells, and leads to a dose-dependent reduction of tumor growth. These results support further characterization of the immune modulatory, anti-tumor properties of THOR-707 and represent a fundamental advance in the application of synthetic biology to medicine, leveraging engineered semi-synthetic organisms as cellular factories to facilitate discovery and production of differentiated classes of chemically modified biologics.


Assuntos
Antineoplásicos/uso terapêutico , Interleucina-2/química , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Descoberta de Drogas , Engenharia Genética , Humanos , Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2 , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Linfócitos/efeitos dos fármacos , Camundongos , Biologia Sintética
3.
Elife ; 4: e07091, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26126266

RESUMO

Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the ß-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis.


Assuntos
Receptores Frizzled/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Via de Sinalização Wnt , Humanos
4.
Proc Natl Acad Sci U S A ; 109(6): 1961-6, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308453

RESUMO

Heterotrimeric G proteins are critical signal-transducing molecules controlled by a complex network of regulators. GIV (a.k.a. Girdin) is a unique component of this network and a nonreceptor guanine nucleotide exchange factor (GEF) that functions via a signature motif. GIV's GEF motif is involved in the regulation of critical biological processes such as phosphoinositide 3 kinase (PI3K)-Akt signaling, actin cytoskeleton remodeling, cell migration, and cancer metastasis. Here we investigated how the GEF function of GIV affects the wiring of its signaling pathway to shape different biological responses. Using a structure-guided approach, we designed a battery of GIV mutants with different Gαi-binding and -activating properties and used it to dissect the specific impact of changes in GIV's GEF activity on several cellular responses. In vivo signaling assays revealed a threshold effect of GEF activity for the activation of Akt by GIV in different cell lines and by different stimuli. Akt signaling is minimal at low GEF activity and is sharply increased to reach a maximum above a threshold of GEF activity, suggesting that GIV is a critical signal amplifier and that activation of Akt is ultrasensitive to changes in GIV's GEF activity. A similar threshold dependence was observed for other biological functions promoted by GIV such as remodeling of the actin cytoskeleton and cell migration. This functional characterization of GIV's GEF motif provides insights into the molecular interactions between nonreceptor GEFs and G proteins and the mechanisms that govern this signal transduction pathway.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Movimento Celular/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Insulina/farmacologia , Lisofosfolipídeos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo
5.
Sci Signal ; 4(192): ra64, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21954290

RESUMO

GIV (Gα-interacting vesicle-associated protein; also known as Girdin) enhances Akt activation downstream of multiple growth factor- and G protein (heterotrimeric guanosine 5'-triphosphate-binding protein)-coupled receptors to trigger cell migration and cancer invasion. We demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at tyrosine-1764 and tyrosine-1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the amino- and carboxyl-terminal Src homology 2 domains of p85α, a regulatory subunit of PI3K; stabilized receptor association with PI3K; and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIV-PI3K interaction a potential therapeutic target within the PI3K-Akt pathway.


Assuntos
Movimento Celular/fisiologia , Ativação Enzimática/fisiologia , Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Tirosina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Análise de Variância , Linhagem Celular Tumoral , Cromatografia Líquida , Imunofluorescência , Humanos , Imunoprecipitação , Modelos Moleculares , Fosforilação , Espectrometria de Massas em Tandem
6.
J Biol Chem ; 286(37): 32404-15, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21799016

RESUMO

GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Fosfatidilinositol 3-Quinases/genética , Fosforilação/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas de Transporte Vesicular/genética
7.
Transpl Immunol ; 25(1): 72-6, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21376809

RESUMO

UNLABELLED: Our retrospective study was aimed to assess the relevance of pre- and post-transplant measurements of serum concentrations of the soluble CD30 molecule (soluble CD30, sCD30) and the cytokine Hepatocyte growth factor (HGF) for prediction of the risk for development of antibody-mediated rejection (AMR) in kidney transplant patients. Evaluation of sCD30, HGF levels and the presence of HLA-specific antibodies in a cohort of 205 patients was performed before, 2weeks and 6months after transplantation. Patients were followed up for kidney graft function and survival for two years. We found a tendency of higher incidence of AMR in retransplanted patients with elevated pre-transplant sCD30 (≥100U/ml) (p=0.051), however no such correlation was observed in first-transplant patients. Kidney recipients with simultaneously high sCD30 and HLA-specific antibodies (sCD30+/Ab+) before transplantation had significantly lower AMR-free survival compared to the other patient groups (p<0.001). HGF concentrations were not associated with the incidence of AMR at any time point of measurement, nevertheless, the combined analysis HGF and sCD30 showed increased incidence of AMR in recipients with elevated pretransplant sCD30 and low HGF levels. CONCLUSION: the predictive value of pretransplant sCD30 for the development of antibody-mediated rejection after transplantation is significantly potentiated by the co-presence of HLA specific antibodies. The role of HGF as a rejection-protective factor in patients with high pretransplant HGF levels would need further investigation.


Assuntos
Rejeição de Enxerto/sangue , Rejeição de Enxerto/mortalidade , Fator de Crescimento de Hepatócito/sangue , Isoanticorpos/sangue , Antígeno Ki-1/sangue , Transplante de Rim/mortalidade , Idoso , Formação de Anticorpos/imunologia , Biomarcadores/sangue , Feminino , Antígenos HLA/imunologia , Fator de Crescimento de Hepatócito/imunologia , Humanos , Isoanticorpos/imunologia , Antígeno Ki-1/imunologia , Transplante de Rim/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida , Fatores de Tempo , Transplante Homólogo
8.
Transpl Immunol ; 18(1): 22-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17584598

RESUMO

UNLABELLED: The aim of our retrospective study was to evaluate the clinical significance of measurement of the soluble CD30 (sCD30) molecule for the prediction of antibody-mediated (humoral) rejection (HR). Sixty-two kidney transplant recipients (thirty-one C4d-positive and thirty-one C4d-negative patients) were included into the study. Soluble CD30 levels were evaluated before transplantation and during periods of graft function deterioration. The median concentrations of the sCD30 molecule were identical in C4d-positive and C4d-negative patients before and after transplantation (65.5 vs. 65.0 and 28.2 vs. 36.0 U/ml, respectively). C4d+ patients who developed DSA de novo had a tendency to have higher sCD30 levels before transplantation (80.7+/-53.6 U/ml, n=8) compared with C4d-negative patients (65.0+/-33.4 U/ml, n=15). Soluble CD30 levels were evaluated as positive and negative (>or=100 U/ml and <100 U/ml respectively) and the sensitivity, specificity and accuracy of sCD30 estimation with regard to finding C4d deposits in peritubular capillaries were determined. The sensitivity of sCD30+ testing was generally below 40%, while the specificity of the test, i.e. the likelihood that if sCD30 testing is negative, C4d deposits would be absent, was 82%. C4d+ patients who developed DSA de novo were evaluated separately; the specificity of sCD30 testing for the incidence of HR in this cohort was 86%. CONCLUSION: We could not confirm in our study that high sCD30 levels (>or=100 U/ml) might be predictive for the incidence of HR. Negative sCD30 values might be however helpful for identifying patients with a low risk for development of DSA and antibody-mediated rejection.


Assuntos
Anticorpos/imunologia , Rejeição de Enxerto/imunologia , Antígeno Ki-1/análise , Transplante de Rim/imunologia , Adulto , Idoso , Complemento C4b/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/análise , Transplante Homólogo
9.
Mol Biol Cell ; 15(11): 4866-76, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15331764

RESUMO

The structural maintenance of chromosomes (SMC) family of proteins play key roles in the organization, packaging, and repair of chromosomes. Cohesin (Smc1+3) holds replicated sister chromatids together until mitosis, condensin (Smc2+4) acts in chromosome condensation, and Smc5+6 performs currently enigmatic roles in DNA repair and chromatin structure. The SMC heterodimers must associate with non-SMC subunits to perform their functions. Using both biochemical and genetic methods, we have isolated a novel subunit of the Smc5+6 complex, Nse3. Nse3 is an essential nuclear protein that is required for normal mitotic chromosome segregation and cellular resistance to a number of genotoxic agents. Epistasis with Rhp51 (Rad51) suggests that like Smc5+6, Nse3 functions in the homologous recombination based repair of DNA damage. We previously identified two non-SMC subunits of Smc5+6 called Nse1 and Nse2. Analysis of nse1-1, nse2-1, and nse3-1 mutants demonstrates that they are crucial for meiosis. The Nse1 mutant displays meiotic DNA segregation and homologous recombination defects. Spore viability is reduced by nse2-1 and nse3-1, without affecting interhomolog recombination. Finally, genetic interactions shared by the nse mutants suggest that the Smc5+6 complex is important for replication fork stability.


Assuntos
Meiose , Proteínas Nucleares/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Sobrevivência Celular , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/ultraestrutura , Reparo do DNA , Raios gama , Deleção de Genes , Immunoblotting , Imunoprecipitação , Mitose , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Peptídeos/química , Ligação Proteica , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido , Raios Ultravioleta
10.
J Biol Chem ; 278(46): 45460-7, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12966087

RESUMO

The structural maintenance of chromosomes (SMC) family of proteins play essential roles in genomic stability. SMC heterodimers are required for sister-chromatid cohesion (Cohesin: Smc1 & Smc3), chromatin condensation (Condensin: Smc2 & Smc4), and DNA repair (Smc5 & Smc6). The SMC heterodimers do not function alone and must associate with essential non-SMC subunits. To gain further insight into the essential and DNA repair roles of the Smc5-6 complex, we have purified fission yeast Smc5 and identified by mass spectrometry the co-precipitating proteins, Nse1 and Nse2. We show that both Nse1 and Nse2 interact with Smc5 in vivo, as part of the Smc5-6 complex. Nse1 and Nse2 are essential proteins and conserved from yeast to man. Loss of Nse1 and Nse2 function leads to strikingly similar terminal phenotypes to those observed for Smc5-6 inactivation. In addition, cells expressing hypomorphic alleles of Nse1 and Nse2 are, like Smc5-6 mutants, hypersensitive to DNA damage. Epistasis analysis suggests that like Smc5-6, Nse1, and Nse2 function together with Rhp51 in the homologous recombination repair of DNA double strand breaks. The results of this study strongly suggest that Nse1 and Nse2 are novel non-SMC subunits of the fission yeast Smc5-6 DNA repair complex.


Assuntos
Proteínas de Ciclo Celular/química , Reparo do DNA , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química , Alelos , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatografia em Gel , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Dimerização , Relação Dose-Resposta à Radiação , Deleção de Genes , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/metabolismo , Peptídeos/química , Fenótipo , Rad51 Recombinase , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Homologia de Sequência de Aminoácidos , Temperatura , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...