Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Anal Chem ; 94(33): 11619-11626, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943181

RESUMO

There is an unmet need for a point-of-care test that is accurate, affordable, and simple to diagnose bacterial vaginosis, the most common cause of vaginal symptoms among women. Bacterial vaginosis leaves patients with undesirable vaginal discharge, malodor, and discomfort. Currently, the diagnosis of bacterial vaginosis is inaccurate and complex, leading to high rates of misdiagnosis. Inaccurate diagnoses are unsafe as bacterial vaginosis increases the risks of acquiring sexually transmitted infections as well as the likelihood of miscarriages. To date, the most commonly identified bacteria associated with bacterial vaginosis is Gardnerella vaginalis. We developed a method for the expression, purification, and detection of vaginolysin, the most well-characterized virulence factor of G. vaginalis. Elevated levels of G. vaginalis have been shown to lead to a toxic vaginal environment, facilitating bacterial vaginosis. We have developed an enzyme-linked immunosorbent assay for the detection of vaginolysin, which was translated to a lateral flow assay for use in a rapid, straightforward, cost-effective paper-based diagnostic test for vaginolysin that does not require the use of instrumentation. In conjunction, we have employed a commercially available smartphone microscopy kit to visualize clue cells without the need for equipment or electricity. The combination of these methodologies allows for an accurate and easy approach to diagnose bacterial vaginosis with minimal resources for use in any setting.


Assuntos
Vaginose Bacteriana , Feminino , Gardnerella vaginalis/metabolismo , Humanos , Testes Imediatos , Smartphone , Vagina/microbiologia , Vaginose Bacteriana/diagnóstico , Vaginose Bacteriana/microbiologia
2.
ACS Omega ; 4(4): 6808-6818, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31058250

RESUMO

Zika virus (ZIKV) is an arbovirus that caused widespread panic beginning in 2015 in northeastern Brazil due to the threatening link between infection and fetal abnormalities such as microcephaly, spontaneous abortions, and stillbirths. Since the epidemic began, the virus has been further investigated, unveiling that the long-term dangers of ZIKV infection go beyond fetal neurological impairment. Characterization of the active infection has proven difficult as only 20% of infected individuals are symptomatic. Additionally, ZIKV is often misdiagnosed due to serological cross-reactivity with similar flaviviruses such as dengue, yellow fever, and West Nile. To date, there is no approved vaccine or therapy against ZIKV, highlighting the urgent need to accurately identify active infection to help minimize the spread of the virus. Herein, we describe a highly specific and sensitive enzyme-linked immunosorbent assay to detect early active ZIKV using neutralizing human monoclonal antibodies isolated from infected patients in Brazil that do not cross-react with dengue viruses 1-4 and bind directly to a ZIKV immunodominant epitope. The calculated limits of detection of active ZIKV fall within the physiological ranges of the virus in human bodily fluids. This selective immunoassay creates the platform required for future translation toward a point-of-care assay for ZIKV, a necessity to diagnose active ZIKV in the remote regions of which it thrives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...