Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121235, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429862

RESUMO

In this paper, the steric hindrance effect related to the presence of either a cyclic or aromatic ring on the self-association process in the series of monohydroxy alcohols (MAs), from cyclohexanemethanol to 4-cyclohexyl-1-butanol and from benzyl alcohol to 4-phenyl-1-butanol, was studied using X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, Broadband Dielectric Spectroscopy (BDS) and the Pendant Drop (PD) methods. Based on FTIR results, it was shown that phenyl alcohol (PhA) and cyclohexyl alcohol (CA) derivatives reveal substantial differences in the association degree, the activation energy of dissociation, and the homogeneity of supramolecular nanoassociates suggesting that the phenyl ring exerts a stronger steric impact on the self-assembling of molecules than cyclohexyl one. Additionally, XRD data revealed that phenyl moiety introduces more heterogeneity in the organization of molecules compared to the cyclic one. The changes in the self-association process of alcohols were also reflected in differences in the molecular dynamics of the H-bonded aggregates, as well as in the Kirkwood factor, defining the long-range correlation between dipoles, which were slightly higher for CAs with respect to those determined for PhAs. Unexpectedly it was also found that the surface layers of PhAs were more organized than those formed by CAs. Thus, these findings provided insight into the impact of aromaticity on the self-assembly process, H-bonding pattern, supramolecular structure, and intermolecular dynamics of the studied alcohols.

2.
Phys Chem Chem Phys ; 23(41): 23796-23807, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643631

RESUMO

In this work, we examined the effect of the length of alkyl chain attached to the benzene ring on the self-assembling phenomena for a series of phenyl alcohol (PhA) derivatives, from phenylmethanol (benzyl alcohol) to 7-phenyl-1-heptanol, by means of X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, and Broadband Dielectric Spectroscopy (BDS) methods. XRD data in the reciprocal and real spaces showed a gradual increase in the local order with the elongation of the alkyl chain. However, the position and full width at half maximum of the main diffraction peak exhibited a non-systematic behavior. To better understand this fact, PhAs were subjected to FTIR spectroscopic studies. These investigations revealed that the association degree and the activation energy of dissociation increase as the alkyl chain length grows. On the other hand, BDS data showed a non-monotonic variation in the Kirkwood correlation factor with increasing length of the alkyl chain, indicating a competition between interactions of the non-polar and polar parts of the molecules in the studied PhAs. Finally, it was also found that the molar surface entropy for PhAs increases with the number of methylene groups, approaching values reported for alkanes, which indicates suppression of the surface order for PhAs with a long alkyl chain. This variability of the various parameters as a function of the length of the side chain shows that the interplay between soft interactions has a strong impact on the local structure and intra and intermolecular dynamics of the studied PhAs.

3.
J Phys Chem B ; 125(11): 2960-2967, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33691402

RESUMO

Herein, we investigated the molecular dynamics as well as intramolecular interactions in two primary monohydroxy alcohols (MA), 2-ethyl-1-hexanol (2EHOH) and n-butanol (nBOH), by means of broad-band dielectric (BDS) and Fourier transform infrared (FTIR) spectroscopy. The modeling data obtained from dielectric studies within the Rubinstein approach [ Macromolecules 2013, 46, 7525-7541] originally developed to describe the dynamical properties of self-assembling macromolecules allowed us to calculate the energy barrier (Ea) of dissociation from the temperature dependences of relaxation times of Debye and structural processes. We found Ea ∼ 19.4 ± 0.8 and 5.3 ± 0.4 kJ/mol for the former and latter systems, respectively. On the other hand, FTIR data analyzed within the van't Hoff relationship yielded the energy barriers for dissociation Ea ∼ 20.3 ± 2.1 and 12.4 ± 1.6 kJ/mol for 2EHOH and nBOH, respectively. Hence, there was almost a perfect agreement between the values of Ea estimated from dielectric and FTIR studies for the 2EHOH, while some notable discrepancy was noted for the second alcohol. A quite significant difference in the activation barrier of dissociation indicates that there are probably supramolecular clusters of varying geometry or a ring-chain-like equilibrium is strongly affected in both alcohols. Nevertheless, our analysis showed that the association/dissociation processes undergoing within nanoassociates are one of the main factors underlying the molecular origin of the Debye process, supporting the transient chain model.

4.
Dalton Trans ; 46(11): 3681-3687, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28256657

RESUMO

Metal-organic frameworks (MOFs), in which metal clusters are coupled by organic moieties, exhibit inherent porosity and crystallinity. Although these systems have been examined for vast potential applications, the elementary proton conduction in anhydrous MOFs still remains elusive. One of the approaches to deal with this problem is the utilization of protic organic molecules, to be accommodated in the porous framework. In this work we report the temperature-dependent crystal structure and proton conduction in [C2H5NH3][Na0.5Fe0.5(HCOO)3] metal-organic frameworks using X-ray diffraction and broadband dielectric spectroscopic techniques. The detailed analysis of the crystal structure reveals disorder of the terminal ethylene groups in the polar phase (space group Pn). The structural phase transition from Pn to P21/n at T ≈ 363 K involves the distortion of the metal formate framework and ordering of EtA+ cations due to the reduction of the cell volume. The dielectric data have been presented in the dynamic window of permittivity formalism to understand the ferroelectric phase transition. The relaxation times have been estimated from the Kramers-Kronig transformation of the dielectric permittivity. A Grotthuss type mechanism of the proton conduction is possible at low temperatures with the activation energy of 0.23 eV. This type of experimental observation is expected to provide new prospective on the fundamental aspect of elementary proton transfer in anhydrous MOFs.

5.
Phys Chem Chem Phys ; 18(42): 29629-29640, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27752659

RESUMO

We report the synthesis, crystal structure, dielectric, vibrational and emission spectra of heterometallic MOFs, [C2H5NH3][Na0.5Cr0.5(HCOO)3] (EtANaCr), [C2H5NH3][Na0.5Al0.5(HCOO)3] (EtANaAl) and [C2H5NH3][Na0.5Al0.475Cr0.025(HCOO)3] (EtANaAlCr). These compounds crystallize in non-centrosymmetric monoclinic polar structures (space group Pn) and undergo order-disorder phase transitions upon heating to the monoclinic centrosymmetric structure (space group P21/n) at 369 (EtANaAl) and 373 K (EtANaCr). In principle, they are ferroelectric below these temperatures. In the high-temperature phase, ethylammonium (EtA+) cations are dynamically disordered over two symmetrically independent positions while upon cooling they begin to order. The ordering is accompanied by distortion of the metal formate framework. The hydrogen bonds (HBs) between the NH3+ group and NaO6 octahedral units are more robust than between the NH3+ group and CrO6 (AlO6) octahedral units and this feature explains a much stronger distortion of the former units and a weak effect of a trivalent cation type on the phase transition temperature. The dielectric studies have confirmed the occurrence of phase transitions of dipolar character and dipole relaxation processes. The optical studies show that EtANaCr and EtANaAlCr exhibit efficient Cr(iii)-based emission characteristics for intermediate-ligand field strength.

6.
J Phys Chem B ; 120(25): 5744-52, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27254726

RESUMO

Primary alcohols have been an active area of research since the beginning of the 20th century. The main problem in studying monohydroxy alcohols is the molecular origin of the slower Debye relaxation, whereas the faster process, recognized as structural relaxation, remains much less investigated. This is because in many primary alcohols the structural process is strongly overlapped by the dominating Debye relaxation. Additionally, there is still no answer for many fundamental questions concerning the origin of the molecular characteristic properties of these materials. One of them is the role of molecular architecture in the formation of hydrogen-bonded structures and its potential connection to the relaxation dynamics of Debye and structural relaxation processes. In this article, we present the results of ambient and high-pressure dielectric studies of monohydroxy alcohols with similar chemical structures but different carbon chain lengths (2-ethyl-1-butanol and 2-ethyl-1-hexanol) and positions of the OH- group (2-methyl-2-hexanol and 2-methyl-3-hexanol). New data are compared with previously collected results for 5-methyl-2-hexanol. We note that differences in molecular architecture have a significant influence on the formation of hydrogen-bonded structures, which is reflected in the behavior of the Debye and structural relaxation processes. Intriguingly, studying the relaxation dynamics in monohydroxy alcohols at high pressures of up to p = 1700 MPa delivers a fundamental bridge to understand the potential connection between molecular conformation and its response to the characteristic properties of these materials.

7.
Phys Chem Chem Phys ; 18(12): 8462-7, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26936014

RESUMO

The fundamental aspects of the relaxation dynamics in niccolite-type, mixed valence metal-organic framework, multiferroic [(CH3)2NH2][Fe(3+)Fe(2+)(HCOO)6] single crystals have been reported using dielectric relaxation spectroscopy covering eight decades in frequency (10(-2) ≤ f ≤ 10(6)) in the temperature range 120 K ≤ T ≤ 250 K. The compound shows antiferroelectric to paraelectric phase transition near T = 154 K with the relaxor nature of electric ordering. The temperature dependent dielectric response in modulus representation indicates three relaxation processes within the experimental window. The variable range hopping model of small polarons explains the bulk non-Debye type conductivity relaxation. The fastest relaxation with activation energy Ea = 0.17 eV is related to progressive freezing of the reorientation motions of DMA(+) cations. X-ray diffraction data revealed that complete freezing of orientational and translational motions of DMA(+) cations occurs well below phase transition temperature. These experimental observations are fundamentally important for the theoretical explanation of relaxation dynamics in niccolite-type metal-organic frameworks.

8.
Artigo em Inglês | MEDLINE | ID: mdl-26172717

RESUMO

In this paper, we investigate how changes in the system entropy influence the characteristic time scale of the system molecular dynamics near the glass transition. Independently of any model of thermodynamic evolution of the time scale, against some previous suppositions, we show that the system entropy S is not sufficient to govern the time scale defined by structural relaxation time τ. In the density scaling regime, we argue that the decoupling between τ and S is a consequence of different values of the scaling exponents γ and γ(S) in the density scaling laws, τ=f(ρ(γ)/T) and S=h(ρ(γ(S))/T), where ρ and T denote density and temperature, respectively. It implies that the proper relation between τ and S requires supplementing with a density factor, u(ρ), i.e., τ=g(u(ρ)w(S)). This meaningful finding additionally demonstrates that the density scaling idea can be successfully used to separate physically relevant contributions to the time scale of molecular dynamics near the glass transition. The relation reported by us between τ and S constitutes a general pattern based on nonconfigurational quantities for describing the thermodynamic evolution of the characteristic time scale of molecular dynamics near the glass transition in the density scaling regime, which is a promising alternative to the approaches based as the Adam-Gibbs model on the configurational entropy that is difficult to evaluate in the entire thermodynamic space. As an example, we revise the Avramov entropic model of the dependence τ(T,ρ), giving evidence that its entropic basis has to be extended by the density dependence of the maximal energy barrier for structural relaxation. We also discuss the excess entropy S(ex), the density scaling of which is found to mimic the density scaling of the total system entropy S.

9.
J Chem Phys ; 141(13): 134507, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296821

RESUMO

The fragility parameter has been acknowledged as one of the most important characteristics of glass-forming liquids. We show that the mystery of the dramatic change in molecular dynamics of systems approaching the glass transition can be better understood by the high pressure study of fragility parameters defined in different thermodynamic conditions. We formulate and experimentally confirm a few rules obeyed by the fragility parameters, which are also rationalized by the density scaling law and its modification suggested for associated liquids. In this way, we successfully explore and gain a new insight into the pressure effect on molecular dynamics of van der Waals liquids, polymer melts, ionic liquids, and hydrogen-bonded systems near the glass transition.

10.
J Chem Phys ; 139(6): 064501, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23947865

RESUMO

4-methyl-3-heptanol, a monohydroxy alcohol with a relatively small dielectric Debye process, is studied in wide ranges of temperature (143 K < T < 308 K) and pressure (0.1 MPa < p < 864 MPa). When monitored under isochronous conditions, i.e., focusing on constant relaxation times, as well as under isothermal conditions, the Debye process gains significant intensity upon pressure application. This behavior contrasts with that of the previously studied octanol 2-ethyl-1-hexanol, which features a large Debye process. These experimentally observed, clearly distinguishable pressure evolutions are discussed to reflect differences in the formation of hydrogen-bonded supramolecular structures.

11.
Phys Rev Lett ; 110(17): 173004, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679720

RESUMO

High pressure viscosity and dielectric measurements were carried out on two monohydroxy alcohols, 2-ethyl-1-hexanol and 5-methyl-2-hexanol, at room temperature. Analysis of the dielectric relaxation times versus viscosity revealed the breakdown of the Einstein-Debye relation above some characteristic pressure. The failure of the Einstein-Debye relation is a manifestation of pressure induced changes of supramolecular hydrogen bonded structures which occur in these liquids.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 1): 052501, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23004805

RESUMO

Although the presence of hydrogen bonds determines most properties of associated materials, their role in relaxation dynamics of liquids remains unclear. Very recently Nakanishi and Nozaki [M. Nakanishi and R. Nozaki, Phys. Rev. E 84, 011503 (2011)] proposed a simplified model for the description of the molecular dynamics of H-bonding network and tested its validity for several polyols. The authors concluded that relaxation dynamics is controlled mainly by the number of hydroxyl groups, whereas the role of molecular architecture can be neglected. This conclusion, as demonstrated herein, fails in the case of pentiols. When we take into account the role of molecular architecture for development of H-bonded structures, it is still possible to satisfactorily describe molecular dynamics in polyols with the use of the Nakanishi and Nozaki model.

13.
J Chem Phys ; 136(22): 224501, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22713051

RESUMO

In this paper, we investigate the effect of pressure on the molecular dynamics of protic ionic liquid lidocaine hydrochloride, a commonly used pharmaceutical, by means of dielectric spectroscopy and pressure-temperature-volume methods. We observed that near T(g) the pressure dependence of conductivity relaxation times reveals a peculiar behavior, which can be treated as a manifestation of decoupling between ion migration and structural relaxation times. Moreover, we discuss the validity of thermodynamic scaling in lidocaine HCl. We also employed the temperature-volume Avramov model to determine the value of pressure coefficient of glass transition temperature, dT(g)/dP|(P = 0.1). Finally, we investigate the role of thermal and density fluctuations in controlling of molecular dynamics of the examined compound.


Assuntos
Líquidos Iônicos/química , Lidocaína/química , Simulação de Dinâmica Molecular , Pressão , Temperatura
14.
J Phys Condens Matter ; 24(6): 065105, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22277923

RESUMO

High pressure dielectric measurements were carried out on hydrogen bonded d-glucose and two van der Waals peracetyl saccharides, i.e. α pentaacetyl glucose and α octaacetyl maltose. In this study we found that after removing H bonds, the molecular dynamics of both modified saccharides is very sensitive to pressure, as reflected by a large value of the pressure coefficient of the glass transition temperature, equal to 270 K GPa(-1) and 280 K GPa(-1) for α pentaacetyl glucose and α octaacetyl maltose, respectively. On the other hand, dT(g)/dP for d-glucose is much lower, equal to 67 K GPa(-1). Our result confirms the general rule that the hydrogen bonding glass-forming liquids exhibit much lower values of dT(g)/dP compared to the van der Waals systems. Additionally, on the basis of results reported herein and also recent literature data for polyalcohols, we point out that the activation volume correlates fairly well with the molecular volume in the case of hydrogen bonding liquids. On the other hand, much larger values of the activation volumes at T(g) with respect to the molecular volumes were found for both peracetyl saccharides.

15.
J Chem Phys ; 135(8): 084507, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21895199

RESUMO

The complex relative permittivity of a non-crystallizable secondary alcohol, 5-methyl-2-hexanol, is measured over a wide range of temperatures and pressures up to 1750 MPa (17.5 kbar). The data at atmospheric pressure (P = 0.101 MPa) are analyzed in terms of three processes, and the results are in complete agreement with that of O. E. Kalinovskaya and J. K. Vij [J. Chem. Phys. 112, 3262 (2000)]. Process I is of the Debye type and process II is of the Davidson-Cole type, whereas process III is identified as the Johari-Goldstein relaxation process. For pressures of ∼500 MPa and higher, processes I and II are seen to merge into each other to form a single dominant process which unambiguously cannot be resolved into more than one process. The dielectric relaxation strength of process I decreases slightly initially with pressure and when the two processes have merged at elevated pressures, the total relaxation strength increases with increase in pressure. Process III is better resolvable at higher pressures especially above T(g) in the supercooled liquid state for the reason that the separation in the time scales between the dominant and the JG relaxation process increases at elevated pressures. Surprisingly we find a change in the slope in the plot of log τ(JG) vs. 1/T for P = 1750 MPa. The results for the relaxation time of alcohols are compared with the Kirkwood correlation factor, g, and it is found that higher is the g, lower is the relaxation time for process I, and it is more of the Debye type. On a reduction in g brought about by an increase in pressure at lower temperatures, the dominant process becomes non-Debye though extensive hydrogen bonding is still present. The dielectric strength of the merged processes increases with increase in pressure. The values of the steepness index, m = |d log τ/d(T(g)/T)|(T = Tg) for processes I and II are different for P = 0.1 MPa. However the value of m, for the composite process, which is a merger of processes I and II, for P = 1750 MPa is almost the same for process II at P = 0.1 MPa. From the results of the activation volume, activation enthalpy, and a comparison of the relaxation times with the g factor, we conclude that both processes I and II are significantly affected by hydrogen bonding and both contribute to the structural relaxation.

17.
J Phys Chem B ; 115(5): 1062-6, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21235248

RESUMO

Broad-band dielectric relaxation measurements were performed for the four pentitols isomers, xylitol, adonitol, L-arabitol and D-arabitol. The comparison of the dynamical properties of these compounds shows similarities between the secondary relaxation processes but also important differences for the temperature dependence of the primary process characterized by the steepness index. These differences enable us to distinguish two groups of compounds that correspond to two kinds of molecular conformation. We show that the formation of more or less extended networks of hydrogen bonds, which reflects the more or less non-Arrhenius variation of the primary relaxation, can be related to the differences of conformation of the studied isomers.

18.
J Phys Chem B ; 114(19): 6579-93, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20415466

RESUMO

Dielectric spectroscopy (DS) was used to investigate the relaxation dynamics of supercooled and glassy ibuprofen at various isobaric and isothermal conditions (pressure up to 1750 MPa). The ambient pressure data are in good agreement with that reported previously in the literature. Our high pressure measurements revealed validity of temperature-pressure superpositioning (TPS) for the alpha-peak. We also found that the value of the fragility index decreases with compression from m = 87 +/- 2 at atmospheric pressure to m = 72.5 +/- 3.5 at high pressure (p = 920 MPa). The drop of fragility observed in our experiment was discussed in the framework of the two-order-parameter (TOP) model. In addition, we have also studied crystallization kinetics in a liquid state of examined drug at ambient and high pressure. We found out that, for the same structural relaxation time/same viscosities, the samples prepared by compression of liquid at high temperatures have significantly elongated induction times as well as overall crystallization times (sample 2: t(0) approximately = 4 h, t(1/2) approximately = 37.5 h; sample 3: t(0) approximately = 5.6 h, t(1/2) approximately = 49 h) compared to that held at lower temperature and ambient pressure (sample 1: t(0) approximately = 1.2 h, t(1/2) approximately = 12.2 h). A possible explanation of this finding is also given.


Assuntos
Anti-Inflamatórios não Esteroides/química , Ibuprofeno/química , Pressão , Cristalização , Cinética , Temperatura
19.
J Phys Condens Matter ; 22(23): 235101, 2010 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21393760

RESUMO

The dynamics of isooctylcyanobiphenyl (8*OCB) was characterized using dielectric and mechanical spectroscopies. This isomer of the liquid crystalline octylcyanobiphenyl (8OCB) vitrifies during cooling or on application of pressure, exhibiting the typical features of glass-forming liquids: non-Debye relaxation function, non-Arrhenius temperature dependence of the relaxation times, τ(α), a dynamic crossover at T ∼ 1.6T(g). This crossover is evidenced by changes in the behavior of both the peak shape and the temperature dependence of τ(α). The primary relaxation time at the crossover, 2 ns at ambient pressure, is the smallest value reported to date for any molecular liquid or polymer. Interestingly, at all temperatures below this crossover, τ(α) and the dc conductivity remain coupled (i.e., conform to the Debye-Stokes-Einstein relation). Two secondary relaxations are observed in the glassy state, one of which is identified as the Johari-Goldstein process. Unlike the case for 8OCB, no liquid crystalline phase could be attained for 8*OCB, demonstrating that relatively small differences in chemical structure can effect substantial changes in the intermolecular potential.


Assuntos
Compostos de Bifenilo/química , Vidro/química , Espectrofotometria/métodos , Cristalização , Condutividade Elétrica , Modelos Estatísticos , Conformação Molecular , Física/métodos , Pressão , Estresse Mecânico , Temperatura
20.
Phys Rev Lett ; 102(14): 145502, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19392451

RESUMO

We report unexpectedly strong variations in the quasielastic scattering (QES) intensity in glasses under pressure. Analysis of the data reveals strong correlations between pressure-induced changes in the QES intensity and the intensity of the boson peak. This observation emphasizes a direct relationship between these two components of the fast dynamics. In addition, we observe changes of the QES spectral shape that can be interpreted as pressure-induced variations in the underlying energy landscape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...