Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biophys J ; 123(9): 1139-1151, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38571309

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) catalyze a reaction that is crucial for the biological decomposition of various biopolymers and for the industrial conversion of plant biomass. Despite the importance of LPMOs, the exact molecular-level nature of the reaction mechanism is still debated today. Here, we investigated the pH-dependent conformation of a second-sphere histidine (His) that we call the stacking histidine, which is conserved in fungal AA9 LPMOs and is speculated to assist catalysis in several of the LPMO reaction pathways. Using constant-pH and accelerated molecular dynamics simulations, we monitored the dynamics of the stacking His in different protonation states for both the resting Cu(II) and active Cu(I) forms of two fungal LPMOs. Consistent with experimental crystallographic and neutron diffraction data, our calculations suggest that the side chain of the protonated and positively charged form is rotated out of the active site toward the solvent. Importantly, only one of the possible neutral states of histidine (HIE state) is observed in the stacking orientation at neutral pH or when bound to cellulose. Our data predict that, in solution, the stacking His may act as a stabilizer (via hydrogen bonding) of the Cu(II)-superoxo complex after the LPMO-Cu(I) has reacted with O2 in solution, which, in fine, leads to H2O2 formation. Also, our data indicate that the HIE-stacking His is a poor acid/base catalyst when bound to the substrate and, in agreement with the literature, may play an important stabilizing role (via hydrogen bonding) during the peroxygenase catalysis. Our study reveals the pH titration midpoint values of the pH-dependent orientation of the stacking His should be considered when modeling and interpreting LPMO reactions, whether it be for classical LPMO kinetics or in industry-oriented enzymatic cocktails, and for understanding LPMO behavior in slightly acidic natural processes such as fungal wood decay.


Assuntos
Histidina , Oxigenases de Função Mista , Simulação de Dinâmica Molecular , Histidina/química , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Domínio Catalítico , Polissacarídeos/metabolismo , Polissacarídeos/química , Cobre/química , Cobre/metabolismo , Celulose/metabolismo , Celulose/química
2.
FEBS J ; 290(2): 379-399, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997626

RESUMO

Cellobiohydrolases (CBHs) in the glycoside hydrolase family 7 (GH7) (EC3.2.1.176) are the major cellulose degrading enzymes both in industrial settings and in the context of carbon cycling in nature. Small carbohydrate conjugates such as p-nitrophenyl-ß-d-cellobioside (pNPC), p-nitrophenyl-ß-d-lactoside (pNPL) and methylumbelliferyl-ß-d-cellobioside have commonly been used in colorimetric and fluorometric assays for analysing activity of these enzymes. Despite the similar nature of these compounds the kinetics of their enzymatic hydrolysis vary greatly between the different compounds as well as among different enzymes within the GH7 family. Through enzyme kinetics, crystallographic structure determination, molecular dynamics simulations, and fluorometric binding studies using the closely related compound o-nitrophenyl-ß-d-cellobioside (oNPC), in this work we examine the different hydrolysis characteristics of these compounds on two model enzymes of this class, TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium. Protein crystal structures of the E212Q mutant of TrCel7A with pNPC and pNPL, and the wildtype TrCel7A with oNPC, reveal that non-productive binding at the product site is the dominating binding mode for these compounds. Enzyme kinetics results suggest the strength of non-productive binding is a key determinant for the activity characteristics on these substrates, with PcCel7D consistently showing higher turnover rates (kcat ) than TrCel7A, but higher Michaelis-Menten (KM ) constants as well. Furthermore, oNPC turned out to be useful as an active-site probe for fluorometric determination of the dissociation constant for cellobiose on TrCel7A but could not be utilized for the same purpose on PcCel7D, likely due to strong binding to an unknown site outside the active site.


Assuntos
Celulase , Trichoderma , Celulose 1,4-beta-Celobiosidase/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Compostos Cromogênicos , Celulose/metabolismo , Simulação de Dinâmica Molecular , Cinética , Celulase/metabolismo
3.
Nat Commun ; 13(1): 7850, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543766

RESUMO

Enzymatic deconstruction of poly(ethylene terephthalate) (PET) is under intense investigation, given the ability of hydrolase enzymes to depolymerize PET to its constituent monomers near the polymer glass transition temperature. To date, reported PET hydrolases have been sourced from a relatively narrow sequence space. Here, we identify additional PET-active biocatalysts from natural diversity by using bioinformatics and machine learning to mine 74 putative thermotolerant PET hydrolases. We successfully express, purify, and assay 51 enzymes from seven distinct phylogenetic groups; observing PET hydrolysis activity on amorphous PET film from 37 enzymes in reactions spanning pH from 4.5-9.0 and temperatures from 30-70 °C. We conduct PET hydrolysis time-course reactions with the best-performing enzymes, where we observe differences in substrate selectivity as function of PET morphology. We employed X-ray crystallography and AlphaFold to examine the enzyme architectures of all 74 candidates, revealing protein folds and accessory domains not previously associated with PET deconstruction. Overall, this study expands the number and diversity of thermotolerant scaffolds for enzymatic PET deconstruction.


Assuntos
Hidrolases , Polietilenotereftalatos , Hidrolases/metabolismo , Polietilenotereftalatos/química , Filogenia , Hidrólise , Etilenos
5.
J Biol Chem ; 297(2): 100931, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216620

RESUMO

Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% accuracy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.


Assuntos
Glicosídeo Hidrolases , Aprendizado de Máquina , Domínio Catalítico , Celulose/metabolismo , Cinética , Simulação de Dinâmica Molecular
6.
Proc Natl Acad Sci U S A ; 117(41): 25476-25485, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989159

RESUMO

Plastics pollution represents a global environmental crisis. In response, microbes are evolving the capacity to utilize synthetic polymers as carbon and energy sources. Recently, Ideonella sakaiensis was reported to secrete a two-enzyme system to deconstruct polyethylene terephthalate (PET) to its constituent monomers. Specifically, the I. sakaiensis PETase depolymerizes PET, liberating soluble products, including mono(2-hydroxyethyl) terephthalate (MHET), which is cleaved to terephthalic acid and ethylene glycol by MHETase. Here, we report a 1.6 Å resolution MHETase structure, illustrating that the MHETase core domain is similar to PETase, capped by a lid domain. Simulations of the catalytic itinerary predict that MHETase follows the canonical two-step serine hydrolase mechanism. Bioinformatics analysis suggests that MHETase evolved from ferulic acid esterases, and two homologous enzymes are shown to exhibit MHET turnover. Analysis of the two homologous enzymes and the MHETase S131G mutant demonstrates the importance of this residue for accommodation of MHET in the active site. We also demonstrate that the MHETase lid is crucial for hydrolysis of MHET and, furthermore, that MHETase does not turnover mono(2-hydroxyethyl)-furanoate or mono(2-hydroxyethyl)-isophthalate. A highly synergistic relationship between PETase and MHETase was observed for the conversion of amorphous PET film to monomers across all nonzero MHETase concentrations tested. Finally, we compare the performance of MHETase:PETase chimeric proteins of varying linker lengths, which all exhibit improved PET and MHET turnover relative to the free enzymes. Together, these results offer insights into the two-enzyme PET depolymerization system and will inform future efforts in the biological deconstruction and upcycling of mixed plastics.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderiales/enzimologia , Plásticos/metabolismo , Engenharia de Proteínas/métodos , Modelos Moleculares , Mutação , Plásticos/química , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Conformação Proteica , Domínios Proteicos , Especificidade por Substrato
7.
J Chem Inf Model ; 60(8): 4098-4107, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32639729

RESUMO

Accurate prediction of the optimal catalytic temperature (Topt) of enzymes is vital in biotechnology, as enzymes with high Topt values are desired for enhanced reaction rates. Recently, a machine learning method (temperature optima for microorganisms and enzymes, TOME) for predicting Topt was developed. TOME was trained on a normally distributed data set with a median Topt of 37 °C and less than 5% of Topt values above 85 °C, limiting the method's predictive capabilities for thermostable enzymes. Due to the distribution of the training data, the mean squared error on Topt values greater than 85 °C is nearly an order of magnitude higher than the error on values between 30 and 50 °C. In this study, we apply ensemble learning and resampling strategies that tackle the data imbalance to significantly decrease the error on high Topt values (>85 °C) by 60% and increase the overall R2 value from 0.527 to 0.632. The revised method, temperature optima for enzymes with resampling (TOMER), and the resampling strategies applied in this work are freely available to other researchers as Python packages on GitHub.


Assuntos
Aprendizado de Máquina , Temperatura
8.
Neurosci Lett ; 736: 135218, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32615248

RESUMO

Dysbindin-1 is implicated in several aspects of schizophrenia, including cognition and both glutamatergic and dopaminergic neurotransmission. Targeted knockout of dysbindin-1A (Dys-1A KO), the most abundant and widely expressed isoform in the brain, is associated with deficits in delay/interference-dependent working memory. Using an ethologically based approach, the following behavioural phenotypes were examined in Dys-1A KO mice: exploratory activity, social interaction, anxiety and problem-solving ability. Levels of monoamines and their metabolites were measured in striatum, hippocampus and prefrontal cortex using high-performance liquid chromatography with electrochemical detection. The ethogram of initial exploration in Dys-1A KO mice was characterised by increased rearing from a seated position; over subsequent habituation, stillness was decreased relative to wildtype. In a test of dyadic social interaction with an unfamiliar conspecific in a novel environment, female KO mice showed an increase in investigative social behaviours. Marble burying behaviour was unchanged. Using the puzzle-box test to measure general problem-solving performance, no effect of genotype was observed across nine trials of increasing complexity. Dys-1A KO demonstrated lower levels of 5-HT in ratio to its metabolite 5-HIAA in the prefrontal cortex. These studies elaborate the behavioural and neurochemical phenotype of Dys-1A KO mice, revealing subtle genotype-related differences in non-social and social exploratory behaviours and habituation of exploration in a novel environment, as well as changes in 5-HT activity in brain areas related to schizophrenia.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Disbindina/metabolismo , Esquizofrenia/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas , Serotonina/metabolismo
9.
J Phys Chem B ; 123(43): 9054-9065, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31545606

RESUMO

Naturally occurring enzymatic pathways enable highly specific, rapid thiophenic sulfur cleavage occurring at ambient temperature and pressure, which may be harnessed for the desulfurization of petroleum-based fuel. One pathway found in bacteria is a four-step catabolic pathway (the 4S pathway) converting dibenzothiophene (DBT), a common crude oil contaminant, into 2-hydroxybiphenyl (HBP) without disrupting the carbon-carbon bonds. 2'-Hydroxybiphenyl-2-sulfinate desulfinase (DszB), the rate-limiting enzyme in the enzyme cascade, is capable of selectively cleaving carbon-sulfur bonds. Accordingly, understanding the molecular mechanisms of DszB activity may enable development of the cascade as industrial biotechnology. Based on crystallographic evidence, we hypothesized that DszB undergoes an active site conformational change associated with the catalytic mechanism. Moreover, we anticipated this conformational change is responsible, in part, for enhancing product inhibition. Rhodococcus erythropolis IGTS8 DszB was recombinantly produced and purified via Escherichia coli BL21 to test these hypotheses. Activity and the resulting conformational change of DszB in the presence of HBP were evaluated. The activity of recombinant DszB was comparable to the natively expressed enzyme and was inhibited via competitive binding of the product, HBP. Using circular dichroism, global changes in DszB conformation were monitored in response to HBP concentration, which indicated that both product and substrate produced similar structural changes. Molecular dynamics (MD) simulations and free energy perturbation with Hamiltonian replica exchange molecular dynamics (FEP/λ-REMD) calculations were used to investigate the molecular-level phenomena underlying the connection between conformation change and kinetic inhibition. In addition to the HBP, MD simulations of DszB bound to common, yet structurally diverse, crude oil contaminants 2',2-biphenol (BIPH), 1,8-naphthosultam (NTAM), 2-biphenyl carboxylic acid (BCA), and 1,8-naphthosultone (NAPO) were performed. Analysis of the simulation trajectories, including root-mean-square fluctuation (RMSF), center of mass (COM) distances, and strength of nonbonded interactions, when compared with FEP/λ-REMD calculations of ligand binding free energy, showed excellent agreement with experimentally determined inhibition constants. Together, the results show that the combination of a molecule's hydrophobicity and nonspecific interactions with nearby functional groups contributes to a competitive inhibition mechanism that locks DszB in a closed conformation and precludes substrate access to the active site.


Assuntos
Compostos de Bifenilo/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Rhodococcus/enzimologia , Tiofenos/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica
10.
Proc Natl Acad Sci U S A ; 116(28): 13970-13976, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235604

RESUMO

Microbial conversion of aromatic compounds is an emerging and promising strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting reaction in aromatic catabolism is O-aryl-demethylation of the abundant aromatic methoxy groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form catechol. However, native GcoAB has minimal ability to demethylate syringol (2,6-dimethoxyphenol), the analogous compound that can be produced from sinapyl alcohol-derived lignin. Despite the abundance of sinapyl alcohol-based lignin in plants, no pathway for syringol catabolism has been reported to date. Here we used structure-guided protein engineering to enable microbial syringol utilization with GcoAB. Specifically, a phenylalanine residue (GcoA-F169) interferes with the binding of syringol in the active site, and on mutation to smaller amino acids, efficient syringol O-demethylation is achieved. Crystallography indicates that syringol adopts a productive binding pose in the variant, which molecular dynamics simulations trace to the elimination of steric clash between the highly flexible side chain of GcoA-F169 and the additional methoxy group of syringol. Finally, we demonstrate in vivo syringol turnover in Pseudomonas putida KT2440 with the GcoA-F169A variant. Taken together, our findings highlight the significant potential and plasticity of cytochrome P450 aromatic O-demethylases in the biological conversion of lignin-derived aromatic compounds.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Lignina/genética , Engenharia de Proteínas , Pirogalol/análogos & derivados , Sistema Enzimático do Citocromo P-450/química , Lignina/biossíntese , Lignina/metabolismo , Metilação , Oxirredução , Oxirredutases O-Desmetilantes/química , Oxirredutases O-Desmetilantes/genética , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Pirogalol/química , Pirogalol/metabolismo
11.
Biochemistry ; 58(12): 1648-1659, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30785271

RESUMO

The enzymatic breakdown of recalcitrant polysaccharides is achieved by synergistic enzyme cocktails of glycoside hydrolases (GHs) and accessory enzymes. Many GHs are processive, meaning that they stay bound to the substrate between subsequent catalytic interactions. Cellulases are GHs that catalyze the hydrolysis of cellulose [ß-1,4-linked glucose (Glc)]. Here, we have determined the relative subsite binding affinity for a glucose moiety as well as the thermodynamic signatures for (Glc)6 binding to three of the seven cellulases produced by the bacterium Thermobifida fusca. TfCel48A is exo-processive, TfCel9A endo-processive, and TfCel5A endo-nonprocessive. Initial hydrolysis of (Glc)5 and (Glc)6 was performed in H218O enabling the incorporation of an 18O atom at the new reducing end anomeric carbon. A matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the products reveals the intensity ratios of otherwise identical 18O- and 16O-containing products to provide insight into how the substrate is placed during productive binding. The two processive cellulases have significant binding affinity in subsites where products dissociate during processive hydrolysis, aligned with a need to have a pushing potential to remove obstacles on the substrate. Moreover, we observed a correlation between processive ability and favorable binding free energy, as previously postulated. Upon ligand binding, the largest contribution to the binding free energy is desolvation for all three cellulases as determined by isothermal titration calorimetry. The two endo-active cellulases show a more favorable solvation entropy change compared to the exo-active cellulase, while the two processive cellulases have less favorable changes in binding enthalpy compared to the nonprocessive TfCel5A.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Glucanos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Celulase/química , Celulase/genética , Glucanos/química , Hidrólise , Ligantes , Mutagênese Sítio-Dirigida , Mutação , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Isótopos de Oxigênio/química , Ligação Proteica , Thermobifida , Termodinâmica
12.
Pharm Res ; 36(4): 50, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30761406

RESUMO

PURPOSE: To investigate two potential strategies aimed at targeting the inflammatory pathogenesis of COPD: a small molecule, all trans retinoic acid (atRA) and human mesenchymal stem cells (hMSCs). METHODS: atRA was formulated into solid lipid nanoparticles (SLNs) via the emulsification-ultrasonication method, and these SLNs were characterised physicochemically. Assessment of the immunomodulatory effects of atRA-SLNs on A549 cells in vitro was determined using ELISA. hMSCs were suspended in a previously developed methylcellulose, collagen and beta-glycerophosphate hydrogel prior to investigating their immunomodulatory effects in vitro. RESULTS: SLNs provided significant encapsulation of atRA and also sustained its release over 72 h. A549 cells were viable following the addition of atRA SLNs and showed a reduction in IL-6 and IL-8 levels. A549 cells also remained viable following addition of the hMSC/hydrogel formulation - however, this formulation resulted in increased levels of IL-6 and IL-8, indicating a potentially pro-inflammatory effect. CONCLUSION: Both atRA SLNs and hMSCs show potential for modulating the environment in inflammatory disease, though through different mechanisms and leading to different outcomes - despite both being explored as strategies for use in inflammatory disease. atRA shows promise by acting in a directly anti-inflammatory manner, whereas further research into the exact mechanisms and behaviours of hMSCs in inflammatory diseases is required.


Assuntos
Anti-Inflamatórios/farmacologia , Fatores Imunológicos/farmacologia , Lipídeos/química , Transplante de Células-Tronco Mesenquimais , Nanopartículas/química , Doença Pulmonar Obstrutiva Crônica/terapia , Tretinoína/farmacologia , Células A549 , Sobrevivência Celular , Colágeno/química , Portadores de Fármacos , Glicerofosfatos/química , Humanos , Hidrogéis , Imunomodulação , Interleucinas/metabolismo , Metilcelulose/química , Transdução de Sinais/efeitos dos fármacos
13.
J Biol Chem ; 294(9): 3169-3180, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602567

RESUMO

ß-Glucosidases enhance enzymatic biomass conversion by relieving cellobiose inhibition of endoglucanases and cellobiohydrolases. However, the susceptibility of these enzymes to inhibition and transglycosylation at high glucose or cellobiose concentrations severely limits their activity and, consequently, the overall efficiency of enzyme mixtures. We determined the impact of these two processes on the hydrolytic activity of the industrially relevant family 3 ß-glucosidases from Hypocrea jecorina, HjCel3A and HjCel3B, and investigated the underlying molecular mechanisms through kinetic studies, binding free energy calculations, and molecular dynamics (MD) simulations. HjCel3B had a 7-fold higher specificity for cellobiose than HjCel3A but greater tendency for glucose inhibition. Energy decomposition analysis indicated that cellobiose has relatively weak electrostatic interactions with binding site residues, allowing it to be easily displaced by glucose and free to inhibit other hydrolytic enzymes. HjCel3A is, thus, preferable as an industrial ß-glucosidase despite its lower activity caused by transglycosylation. This competing pathway to hydrolysis arises from binding of glucose or cellobiose at the product site after formation of the glycosyl-enzyme intermediate. MD simulations revealed that binding is facilitated by hydrophobic interactions with Trp-37, Phe-260, and Tyr-443. Targeting these aromatic residues for mutation to reduce substrate affinity at the product site would therefore potentially mitigate transglycosidic activity. Engineering improved variants of HjCel3A and other structurally similar ß-glucosidases would have a significant economic effect on enzymatic biomass conversion in terms of yield and production cost as the process can be consequently conducted at higher substrate loadings.


Assuntos
Inibidores Enzimáticos/farmacologia , Hypocrea/enzimologia , Simulação de Dinâmica Molecular , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/metabolismo , Celobiose/metabolismo , Glucosídeos/química , Glucosídeos/metabolismo , Glicosídeos/química , Glicosídeos/metabolismo , Glicosilação , Cinética , Conformação Proteica , Termodinâmica , beta-Glucosidase/química
14.
Biotechnol Biofuels ; 11: 319, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519283

RESUMO

BACKGROUND: Effective enzymatic degradation of crystalline polysaccharides requires a synergistic cocktail of hydrolytic enzymes tailored to the wide-ranging degree of substrate crystallinity. To accomplish this type of targeted carbohydrate recognition, nature produces multi-modular enzymes, having at least one catalytic domain appended to one or more carbohydrate binding modules (CBMs). The Type B CBM categorization encompasses several families (i.e., protein folds) of CBMs that are generally thought to selectively bind oligomeric polysaccharides; however, a subset of cellulose-specific CBM families (17 and 28) appear to bind non-crystalline cellulose more tightly than oligomers and in a manner that discriminates between surface topology. RESULTS: To provide insight into this unexplained phenomenon, we investigated the molecular-level origins of oligomeric and non-crystalline carbohydrate recognition in cellulose-specific Type B CBMs using molecular dynamics (MD) simulation and free energy calculations. Examining two CBMs from three different families (4, 17, and 28), we describe how protein-ligand dynamics contribute to observed variations in binding affinity of oligomers within the same CBM family. Comparisons across the three CBM families identified factors leading to modified functionality prohibiting competitive binding, despite similarity in sequence and specificity. Using free energy perturbation with Hamiltonian replica exchange MD, we also examined the hypothesis that the open topology of the binding grooves in families 17 and 28 necessitates tight binding of an oligomer, while the more confined family 4 binding groove does not require the same degree of tight binding. Finally, we elucidated the mechanisms of non-crystalline carbohydrate recognition by modeling CBMs complexed with a partially decrystallized cellulose substrate. Molecular simulation provided structural and dynamic data for direct comparison to oligomeric modes of carbohydrate recognition, and umbrella sampling MD was used to determine ligand binding free energy. Comparing both protein-carbohydrate interactions and ligand binding free energies, which were in good agreement with experimental values, we confirmed the hypothesis that family 17 and 28 CBMs bind non-crystalline cellulose and oligomers with different affinities (i.e., high and low). CONCLUSIONS: Our study provides an unprecedented level of insight into the complex solid and soluble carbohydrate substrate recognition mechanisms of Type B CBMs, the findings of which hold considerable promise for enhancing lignocellulosic biomass conversion technology and development of plant cell wall probes.

15.
J Phys Chem B ; 122(41): 9452-9459, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30247906

RESUMO

ß-Glucosidases (ßgls) from glycoside hydrolase family 3 play an important role in biomass degradation by catalyzing cellobiose hydrolysis. However, the hydrolysis rate decreases when the glucose product or another cellobiose competes with water to form oligosaccharides in a reaction called transglycosylation. Both reactions involve proton transfer to the acid/base residue and nucleophilic attack on the glycosyl-enzyme intermediate. To gain a deeper understanding of these competing reactions, quantum mechanics/molecular mechanics calculations were performed. Although both reactions are exothermic and have similar free-energy barriers (∼18 kcal/mol), the transition-state (TS) characteristics are different. The glycosyl-water bond is nearly formed in the hydrolysis TS, leading to reduced ionic character and a 4C1 chair conformation. The transglycosylation TS is more positively charged and adopts the 4H3 half-chair conformation because bond formation is less advanced. Water interacts solely with acid/base residue E441, though the long distance between them (2.1 Å) suggests that E441 does not activate water for nucleophilic attack. In comparison, a glucose acceptor has a lower deprotonation enthalpy and hydrogen bonds to E441 (1.6 Å) as well as to Y204, R169, and R67. Knowledge of these factors that are relevant to TS formation and stability is valuable for engineering ßgls with enhanced hydrolytic activity for industrial applications.

16.
Biophys J ; 115(7): 1251-1263, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224054

RESUMO

Cytochrome P450BM3 catalyzes the hydroxylation and/or epoxidation of fatty acids, fatty amides, and alcohols. Protein engineering has produced P450BM3 variants capable of accepting drug molecules normally metabolized by human P450 enzymes. The enhanced substrate promiscuity has been attributed to the greater flexibility of the lid of the substrate channel. However, it is not well understood how structurally different and highly polar drug molecules can stably bind in the active site nor how the activity and coupling efficiency of the enzyme may be affected by the lack of enzyme-substrate complementarity. To address these important aspects of non-native small molecule binding, this study investigated the binding of drug molecules with different size, charge, polar surface area, and human P450 affinity on the promiscuous R47L/F87V/L188Q/E267V/F81I pentuple mutant of P450BM3. Binding free energy data and energy decomposition analysis showed that pentuple mutant P450BM3 stably binds (i.e., negative ΔGb°) a broad range of substrate and inhibitor types because dispersion interactions with active site residues overcome unfavorable repulsive and electrostatic effects. Molecular dynamics simulations revealed that 1) acidic substrates tend to disrupt the heme propionate A-K69 salt bridge, which may reduce heme oxidizing ability, and 2) the lack of complementarity leads to high substrate mobility and water density in the active site, which may lead to uncoupling. These factors must be considered in future developments of P450BM3 as a biocatalyst in the large-scale production of drug metabolites.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica Molecular , Mutação , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Heme/metabolismo , Mutagênese Sítio-Dirigida , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , Ligação Proteica , Termodinâmica
17.
FEBS J ; 285(12): 2225-2242, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29660793

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are a group of recently discovered enzymes that play important roles in the decomposition of recalcitrant polysaccharides. Here, we report the biochemical, structural, and computational characterization of an LPMO from the white-rot fungus Heterobasidion irregulare (HiLPMO9B). This enzyme oxidizes cellulose at the C1 carbon of glycosidic linkages. The crystal structure of HiLPMO9B was determined at 2.1 Å resolution using X-ray crystallography. Unlike the majority of the currently available C1-specific LPMO structures, the HiLPMO9B structure contains an extended L2 loop, connecting ß-strands ß2 and ß3 of the ß-sandwich structure. Molecular dynamics (MD) simulations suggest roles for both aromatic and acidic residues in the substrate binding of HiLPMO9B, with the main contribution from the residues located on the extended region of the L2 loop (Tyr20) and the LC loop (Asp205, Tyr207, and Glu210). Asp205 and Glu210 were found to be involved in the hydrogen bonding with the hydroxyl group of the C6 carbon of glucose moieties directly or via a water molecule. Two different binding orientations were observed over the course of the MD simulations. In each orientation, the active-site copper of this LPMO preferentially skewed toward the pyranose C1 of the glycosidic linkage over the targeted glycosidic bond. This study provides additional insight into cellulose binding by C1-specific LPMOs, giving a molecular-level picture of active site substrate interactions. DATABASE: The atomic coordinates and structure factors for HiLPMO9B have been deposited in the Protein Data Bank with accession code 5NNS.


Assuntos
Aminoácidos/química , Basidiomycota/enzimologia , Celulose/química , Cobre/química , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Sequência de Aminoácidos , Aminoácidos/metabolismo , Basidiomycota/química , Basidiomycota/genética , Domínio Catalítico , Celulose/metabolismo , Clonagem Molecular , Cobre/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Oxirredução , Pichia/genética , Pichia/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
Circ Res ; 123(1): 57-72, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29636378

RESUMO

RATIONALE: Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. OBJECTIVE: The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. METHODS AND RESULTS: In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. CONCLUSIONS: c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings.


Assuntos
Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-kit/fisiologia , Células-Tronco/fisiologia , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Receptores ErbB/metabolismo , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Estresse Fisiológico
19.
Biotechnol Biofuels ; 11: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29344086

RESUMO

BACKGROUND: The ascomycete fungus Trichoderma reesei is the predominant source of enzymes for industrial conversion of lignocellulose. Its glycoside hydrolase family 7 cellobiohydrolase (GH7 CBH) TreCel7A constitutes nearly half of the enzyme cocktail by weight and is the major workhorse in the cellulose hydrolysis process. The orthologs from Trichoderma atroviride (TatCel7A) and Trichoderma harzianum (ThaCel7A) show high sequence identity with TreCel7A, ~ 80%, and represent naturally evolved combinations of cellulose-binding tunnel-enclosing loop motifs, which have been suggested to influence intrinsic cellobiohydrolase properties, such as endo-initiation, processivity, and off-rate. RESULTS: The TatCel7A, ThaCel7A, and TreCel7A enzymes were characterized for comparison of function. The catalytic domain of TatCel7A was crystallized, and two structures were determined: without ligand and with thio-cellotriose in the active site. Initial hydrolysis of bacterial cellulose was faster with TatCel7A than either ThaCel7A or TreCel7A. In synergistic saccharification of pretreated corn stover, both TatCel7A and ThaCel7A were more efficient than TreCel7A, although TatCel7A was more sensitive to thermal inactivation. Structural analyses and molecular dynamics (MD) simulations were performed to elucidate important structure/function correlations. Moreover, reverse conservation analysis (RCA) of sequence diversity revealed divergent regions of interest located outside the cellulose-binding tunnel of Trichoderma spp. GH7 CBHs. CONCLUSIONS: We hypothesize that the combination of loop motifs is the main determinant for the observed differences in Cel7A activity on cellulosic substrates. Fine-tuning of the loop flexibility appears to be an important evolutionary target in Trichoderma spp., a conclusion supported by the RCA data. Our results indicate that, for industrial use, it would be beneficial to combine loop motifs from TatCel7A with the thermostability features of TreCel7A. Furthermore, one region implicated in thermal unfolding is suggested as a primary target for protein engineering.

20.
Org Biomol Chem ; 16(2): 316-324, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29251740

RESUMO

ß-Glucosidases (ßgls) primarily catalyze the hydrolysis of the terminal glycosidic bond at the non-reducing end of ß-glucosides, although glycosidic bond synthesis (called transglycosylation) can also occur in the presence of another acceptor. In the final reaction step, the glucose product or another substrate competes with water for transfer to the glycosyl-enzyme intermediate. The factors governing the balance between the two pathways are not fully known; however, the involvement of ionizable residues in binding and catalysis suggests that their pKa may play a role. Through constant pH molecular dynamics simulations of a glycoside hydrolase Family 3 (GH3) ßgl, we showed that the pKa of the catalytic acid/base residue, E441, is low (∼2) during either reaction due to E441-R125-E128 and E441-R125-E166 hydrogen bond networks. The low basicity of E441 would reduce its ability to deprotonate the acceptor. This may be less critical for transglycosylation because sugars have a lower deprotonation enthalpy than water. Moreover, their acidity would be increased by hydrogen bonding with R169 at the acceptor binding site. In contrast, no such interaction was observed for catalytic water. The results are likely applicable to other GH3 ßgls because R125, E128, E166, and R169 are conserved. As these enzymes are commonly used in biomass degradation, there is interest in developing variants with enhanced hydrolytic activity. This may be accomplished by elevating the acid/base residue pKa by disrupting its hydrogen bond networks and reducing the affinity and reactivity of a sugar acceptor by mutating R169.


Assuntos
Domínio Catalítico , Celulases/metabolismo , Catálise , Celulases/química , Glicosilação , Ligação de Hidrogênio , Hidrólise , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...