Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 79(Pt 11): 971-979, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37860959

RESUMO

Cell-surface proteins known as adhesins enable bacteria to colonize particular environments, and in Gram-positive bacteria often contain autocatalytically formed covalent intramolecular cross-links. While investigating the prevalence of such cross-links, a remarkable example was discovered in Mobiluncus mulieris, a pathogen associated with bacterial vaginosis. This organism encodes a putative adhesin of 7651 residues. Crystallography and mass spectrometry of two selected domains, and AlphaFold structure prediction of the remainder of the protein, were used to show that this adhesin belongs to the family of thioester, isopeptide and ester-bond-containing proteins (TIE proteins). It has an N-terminal domain homologous to thioester adhesion domains, followed by 51 immunoglobulin (Ig)-like domains containing ester- or isopeptide-bond cross-links. The energetic cost to the M. mulieris bacterium in retaining such a large adhesin as a single gene or protein construct suggests a critical role in pathogenicity and/or persistence.


Assuntos
Adesinas Bacterianas , Mobiluncus , Feminino , Humanos , Mobiluncus/metabolismo , Adesinas Bacterianas/química , Ésteres/química
2.
Nature ; 620(7975): 863-872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587336

RESUMO

Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.


Assuntos
Reprogramação Celular , Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Humanos , Cromatina/genética , Cromatina/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Lamina Tipo B
3.
Genome Biol ; 24(1): 59, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991492

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified > 200 loci associated with breast cancer risk. The majority of candidate causal variants are in non-coding regions and likely modulate cancer risk by regulating gene expression. However, pinpointing the exact target of the association, and identifying the phenotype it mediates, is a major challenge in the interpretation and translation of GWAS. RESULTS: Here, we show that pooled CRISPR screens are highly effective at identifying GWAS target genes and defining the cancer phenotypes they mediate. Following CRISPR mediated gene activation or suppression, we measure proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect on DNA repair. We perform 60 CRISPR screens and identify 20 genes predicted with high confidence to be GWAS targets that promote cancer by driving proliferation or modulating the DNA damage response in breast cells. We validate the regulation of a subset of these genes by breast cancer risk variants. CONCLUSIONS: We demonstrate that phenotypic CRISPR screens can accurately pinpoint the gene target of a risk locus. In addition to defining gene targets of risk loci associated with increased breast cancer risk, we provide a platform for identifying gene targets and phenotypes mediated by risk variants.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Animais , Camundongos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Predisposição Genética para Doença , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
NPJ Regen Med ; 7(1): 31, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710627

RESUMO

The impact of aging on intestinal stem cells (ISCs) has not been fully elucidated. In this study, we identified widespread epigenetic and transcriptional alterations in old ISCs. Using a reprogramming algorithm, we identified a set of key transcription factors (Egr1, Irf1, FosB) that drives molecular and functional differences between old and young states. Overall, by dissecting the molecular signature of aged ISCs, our study identified transcription factors that enhance the regenerative capacity of ISCs.

5.
Nature ; 586(7827): 101-107, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939092

RESUMO

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Transcrição Gênica
6.
Methods Mol Biol ; 1940: 33-45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788816

RESUMO

Mouse embryonic stem cells (mESCs) are pluripotent cells derived from preimplantation embryos that have the capacity to self-renew indefinitely in vitro. mESCs are an indispensable tool for studying cellular differentiation in vitro, generating disease in a dish models, and have been used extensively for the generation of transgenic animals. Therefore, maintaining their pluripotent state, even after extended culture, is crucial for their utility. Herein, we describe in detail a protocol for the culture of mESCs in the presence of fetal calf serum (FCS), leukemia inhibitory factor (LIF), and a layer of irradiated mouse embryonic fibroblasts (iMEFs). This culture system reliably sustains mESC pluripotency and self-renewal capacity, allowing their use in a wide range of experimental settings.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Células-Tronco Embrionárias Murinas/citologia , Animais , Diferenciação Celular , Proliferação de Células/fisiologia , Células Cultivadas , Criopreservação/métodos , Fator Inibidor de Leucemia/farmacologia , Camundongos
7.
Methods Mol Biol ; 1940: 63-76, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788818

RESUMO

Terminally differentiated somatic cells can be reprogrammed into an embryonic stem cell-like state by the forced expression of four transcription factors: Oct4, Klf4, Sox2, and c-Myc (OKSM). These so-called induced pluripotent stem (iPS) cells can give rise to any cell type of the body and thus have tremendous potential for many applications in research and regenerative medicine. Herein, we describe (1) a protocol for the generation of iPS cells from mouse embryonic fibroblasts (MEFs) using a doxycycline (Dox)-inducible lentiviral transduction system; (2) the derivation of clonal iPS cell lines; and (3) the characterization of the pluripotent potential of iPS cell lines using alkaline phosphatase staining, flow cytometry, and the teratoma formation assays.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular/genética , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/virologia , Lentivirus/genética , Animais , Diferenciação Celular , Células Cultivadas , Doxiciclina/farmacologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução Genética/métodos
8.
Cell Rep ; 21(10): 2649-2660, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212013

RESUMO

Our current understanding of induced pluripotent stem cell (iPSC) generation has almost entirely been shaped by studies performed on reprogramming fibroblasts. However, whether the resulting model universally applies to the reprogramming process of other cell types is still largely unknown. By characterizing and profiling the reprogramming pathways of fibroblasts, neutrophils, and keratinocytes, we unveil that key events of the process, including loss of original cell identity, mesenchymal to epithelial transition, the extent of developmental reversion, and reactivation of the pluripotency network, are to a large degree cell-type specific. Thus, we reveal limitations for the use of fibroblasts as a universal model for the study of the reprogramming process and provide crucial insights about iPSC generation from alternative cell sources.


Assuntos
Fibroblastos/citologia , Neutrófilos/citologia , Animais , Reprogramação Celular/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fibroblastos/fisiologia , Citometria de Fluxo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Queratinócitos/citologia , Queratinócitos/fisiologia , Neutrófilos/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo
9.
Nat Methods ; 14(11): 1055-1062, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945704

RESUMO

Recent reports on the characteristics of naive human pluripotent stem cells (hPSCs) obtained using independent methods differ. Naive hPSCs have been mainly derived by conversion from primed hPSCs or by direct derivation from human embryos rather than by somatic cell reprogramming. To provide an unbiased molecular and functional reference, we derived genetically matched naive hPSCs by direct reprogramming of fibroblasts and by primed-to-naive conversion using different naive conditions (NHSM, RSeT, 5iLAF and t2iLGöY). Our results show that hPSCs obtained in these different conditions display a spectrum of naive characteristics. Furthermore, our characterization identifies KLF4 as sufficient for conversion of primed hPSCs into naive t2iLGöY hPSCs, underscoring the role that reprogramming factors can play for the derivation of bona fide naive hPSCs.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Fibroblastos/citologia , Instabilidade Genômica , Humanos , Fator 4 Semelhante a Kruppel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...