Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701407

RESUMO

Glucocorticoids are key components of the current standard-of-care regimens (e.g., R-CHOP, EPOCH-R, Hyper-CVAD) for treatment of B-cell malignancy. However, systemic glucocorticoid treatment is associated with several adverse events. CD19 displays restricted expression in normal B-cells and is up-regulated in B-cell malignancies. ABBV-319 is a CD19-targeting antibody-drug conjugate (ADC) engineered to reduce glucocorticoid-associated toxicities while possessing three distinct mechanisms of action (MOA) to increase therapeutic efficacy: (1) antibody-mediated delivery of glucocorticoid receptor modulator (GRM) payload to activate apoptosis, (2) inhibition of CD19 signaling, and (3) enhanced Fc-mediated effector function via afucosylation of the antibody backbone. ABBV-319 elicited potent GRM-driven anti-tumor activity against multiple malignant B-cell lines in vitro as well as in cell line-derived xenografts (CDXs) and patient-derived xenografts (PDXs) in vivo. Remarkably, a single-dose of ABBV-319 induced sustained tumor regression and enhanced anti-tumor activity compared to repeat dosing of systemic prednisolone at the maximum tolerated dose (MTD) in mice. The unconjugated CD19 monoclonal antibody (mAb) also displayed anti-proliferative activity on a subset of B-cell lymphoma cell lines through the inhibition of PI3K signaling. Moreover, afucosylation of the CD19 mAb enhanced Fc-mediated antibody-dependent cellular cytotoxicity (ADCC), and this activity was maintained after conjugation with GRM payloads. Notably, ABBV-319 displayed superior efficacy compared to afucosylated CD19 mAb in human CD34+ PBMC-engrafted NSG-tg(Hu-IL15) transgenic mice, demonstrating enhanced anti-tumor activity when multiple MOAs are enabled. ABBV-319 also showed durable anti-tumor activity across multiple B-cell lymphoma PDX models, including non-germinal center B-cell (GCB) DLBCL and relapsed lymphoma post R-CHOP treatment. Collectively, these data support the ongoing evaluation of ABBV-319 in Phase I clinical trial (NCT05512390).

2.
Int J Pharm ; 420(1): 118-21, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21893179

RESUMO

This paper describes the use of spin centrifugation-dialysis (SCD) for small-scale concentration/purification of siRNA-lipid complexes designed for use as therapeutic agents for gene silencing. SCD consists of a two-step method for concentration, filtration and buffer exchange of lipid nanoparticles (LNP) to provide a homogeneous preparation suitable for injection. Here, we compare SCD with the more traditionally used tangential flow filtration (TFF), and demonstrate the physicochemical and biological comparability of LNPs produced with both methods. TFF is a highly scalable method used in both developmental and production applications, but is limited in terms of miniaturization. In contrast to TFF, SCD is faster, less expensive, and requires less oversight for assembling LNPs for small-scale applications, such as target screening both in vitro and in vivo. The finding that SCD is a viable method for filtering LNPs in a manner similar to TFF, producing particles with comparable properties and biological activity, is significant given the complexity and sensitivity of LNPs to processing conditions.


Assuntos
Centrifugação , Diálise/métodos , Ensaios de Triagem em Larga Escala , Lipídeos/química , Nanopartículas , Interferência de RNA , RNA Interferente Pequeno/química , Animais , Soluções Tampão , Linhagem Celular Tumoral , Centrifugação/instrumentação , Diálise/instrumentação , Regulação para Baixo , Desenho de Equipamento , Filtração , Ensaios de Triagem em Larga Escala/instrumentação , Concentração de Íons de Hidrogênio , Luciferases/biossíntese , Luciferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Miniaturização , Nanotecnologia , RNA Interferente Pequeno/metabolismo , Fatores de Tempo , Transfecção
3.
Mol Pharmacol ; 79(6): 953-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21427169

RESUMO

Deeper knowledge of pharmacokinetic and pharmacodynamic (PK/PD) concepts for RNA therapeutics is important to streamline the drug development process and for rigorous selection of best performing drug candidates. Here we characterized the PK/PD relationship for small interfering RNAs (siRNAs) targeting luciferase by examining siRNA concentration in plasma and liver, the temporal RNA-induced silencing complex binding profiles, mRNA reduction, and protein inhibition measured by noninvasive bioluminescent imaging. A dose-dependent and time-related decrease in bioluminescence was detected over 25 days after a single treatment of a lipid nanoparticle-formulated siRNA targeting luciferase messenger RNA. A direct relationship was observed between the degree of in vivo mRNA and protein reduction and the Argonaute2 (Ago2)-bound siRNA fraction but not with the total amount of siRNA found in the liver, suggesting that the Ago2-siRNA complex is the key determinant of target inhibition. These observations were confirmed for an additional siRNA that targets endogenously expressed Sjögren syndrome antigen B (Ssb) mRNA, indicating that our observations are not limited to a transgenic mouse system. Our data provide detailed information of the temporal regulation of siRNA liver delivery, Ago2 loading, mRNA reduction, and protein inhibition that are essential for the rapid and cost-effective clinical development of siRNAs therapeutics.


Assuntos
Inativação Gênica , RNA Interferente Pequeno/genética , Animais , Sequência de Bases , Primers do DNA , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...