Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 308(Pt 3): 136453, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36122745

RESUMO

Methylmercury (MeHg) is the most common organic form of mercury (Hg) that humans are exposed and is considered an environmental pollutant. Several populations that live in endemic regions of MeHg exposure are subject to the toxicant for long periods, including pregnant women and children, causing damage to several organs during early periods of development. Alveolar bone is an essential structure for the oral cavity, responsible for supporting teeth and masticatory forces. However, evidence on the effects of MeHg on alveolar bone and the intrauterine and lactation period is lacking. Thus, this study aimed to investigate the effects of MeHg exposure during gestation and lactation on the developing alveolar bone of offspring rats after maternal exposure. Dams were exposed during 41 days of pregnancy and lactation, and the mandibles of the offspring were collected. The alveolar bone was analyzed by Fourier Transform Infrared Spectroscopy to evaluate the physicochemical composition; by Scanning Electron Microscopy for ultrastructural evaluation; by histopathological, histochemical, and morphometric for tissue analyses. In addition, bone quality was assessed by X-ray microtomography. MeHg exposure altered the mineral composition and caused histological damage associated with a lower quantity and thickness of bone trabeculae, as well as reduced osteocyte density and collagen fiber content. A reduction in trabecular thickness and bone volume and an increase in trabecular spaces were observed and were associated with anatomical compromise of the vertical bone dimensions. Thus, the results suggest that the developing alveolar bone is susceptible to the toxic effects of MeHg when organisms are exposed during intrauterine and lactation periods. From a translational perspective, these changes in the alveolar bone can help us understand possible abnormalities induced by toxic metals and highlight the need for care for structures other than those already seen as targets for damage triggered by environmental MeHg exposure.


Assuntos
Poluentes Ambientais , Mercúrio , Compostos de Metilmercúrio , Animais , Criança , Colágeno , Feminino , Humanos , Lactação , Compostos de Metilmercúrio/toxicidade , Gravidez , Ratos
2.
Polymers (Basel) ; 14(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335436

RESUMO

Chitosan comprises polymeric macromolecules with technical and biological properties that have been used in biomedical healing applications requiring anti-microbial and anti-inflammatory capacities worldwide. In the tropical regions, green banana peel extract and andiroba oil are considered natural products with wound healing properties. The present study, for the first time, synthesized chitosan/green banana peel extract/andiroba oil (CGA) membranes and analyzed them using scanning electron microscopy (SEM) and the swelling and moisture tests. The CGA membranes together with control membranes of plain chitosan and chitosan plus green banana peel extract, were characterized by contact angle measurement, X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Macroscopic analysis showed significant differences in color and transparency caused by the number of decoction days used for extract preparation and the oil content. SEM observations disclosed the formation of two phases, lipid and polymer, in the CGA. The number of decoction days and the andiroba oil content were inversely related to the swelling moisture uptake. All membranes were found to be hydrophilic with contact angles less than 90°. The incorporation of plant extract and oil promoted the appearance of related XRD peaks. DSC curves revealed a reduction in the enthalpy of the CGA membranes compared with plain chitosan, which might be attributed to the evaporation of the natural extract and oil. Based on these findings, the studied newly synthesized membranes demonstrated a potential for healing epithelial lesions.

3.
PeerJ ; 10: e12573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127276

RESUMO

BACKGROUND: In comparison to organic mercury (MeHg), the environmental inorganic mercury (IHg) can be found in some skin-lightening cosmestics were considered "harmless" for a long time. However, recent studies have shown that long-term exposure to low doses of IHg may affect biological systems. Therefore, this study investigated the effects of IHg long-term exposure to the alveolar bone of adult rats. METHODS: Adult Wistar rats were distributed in control and HgCl2 exposed (0.375 mg/kg/day). After 45 days, the rats were euthanized and both blood and hemimandibles were collected. Total blood Hg levels were measured and both inorganic and organic components of the alveolar bone were determined through XRD and ATR-FTIR. The microstructure of the alveolar bone was assessed by using micro-CT and the morphometric analysis was performed by using stereomicroscopy. RESULTS: Alterations in the physicochemical components of the alveolar bone of exposed animals were observed. The bone changes represented a tissue reaction at the microstructural level, such as bone volume increase. However, no significant dimensional changes (bone height) were observed. CONCLUSION: Exposure to IHg at this dose can promote microstructural changes and alteration in the organic and inorganic components in the alveolar bone.


Assuntos
Mercúrio , Animais , Ratos , Ratos Wistar , Mercúrio/toxicidade
4.
Environ Sci Pollut Res Int ; 29(10): 13930-13940, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34599710

RESUMO

There are a few data relating to the effects of lead (Pb) exposure on the alveolar bone, which has very distinct morphophysiological characteristics and is of great importance in the oral cavity. In this context, the aim of this study was to investigate the changes promoted after long-term exposure to Pb in the microstructure of the alveolar bone of rats. Twenty adult Wistar rats were exposed to 50 mg/kg/day of lead acetate for 55 days. These animals were euthanized and had their mandible removed. Each mandible was divided into hemimandibles, and the alveolar bone was used for bone lead quantification, crystallinity analysis, microstructure evaluation by the percentage of bone volume (BV/TV), number of trabeculae (Tb.N), thickness of the trabecular (Tb.Th), and trabecular space (Tb.Sp). Morphometric analysis of the exposed root area was also performed. Long-term exposure to Pb resulted in high levels of Pb in the alveolar bone but showed no changes in the organization of crystallinity. The microstructural analyses showed a reduction of BV/TV, Tb.Th, and Tb.N and increase of Tb.Sp parameters, resulting in an increase in the exposed root area and an alveolar bone loss in height. The findings of this study reveal the ability of Pb to alter the alveolar bone microstructure after long-term exposure to the metal, possibly due to changes in tissue homeostasis, contributing to the reduction of bone quality.


Assuntos
Osso e Ossos , Chumbo , Acetatos , Animais , Ratos , Ratos Wistar , Microtomografia por Raio-X
5.
Front Chem ; 10: 1061624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700078

RESUMO

Eugenol is a natural compound with well-known repellent activity. However, its pharmaceutical and cosmetic applications are limited, since this compound is highly volatile and thermolabile. Nanoencapsulation provides protection, stability, conservation, and controlled release for several compounds. Here, eugenol was included in ß-cyclodextrin, and the complex was characterized through X-ray diffraction analysis (XRD) and Fourier-transform infrared spectroscopy (FTIR). Additionally, we used molecular dynamics simulations to explore the eugenol-ß-cyclodextrin complex stability with temperature increases. Our computational result demonstrates details of the molecular interactions and conformational changes of the eugenol-ß-cyclodextrin complex and explains its stability between temperatures 27°C and 48°C, allowing its use in formulations that are subjected to varied temperatures.

6.
Environ Sci Pollut Res Int ; 28(33): 45879-45890, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33881690

RESUMO

Aluminum (Al) is one of the most found elements in nature in many forms, and human exposure can be quite common. Therefore, it is important to investigate the effects of exposure to Al mainly at low doses and for a prolonged period, in order to simulate human exposure in the periodontium, an important structure for support and protection of the teeth. This investigation aimed to study the aluminum chloride (AlCl3) toxicological effects in the mineral composition and micromorphology of the alveolar bone of rats. Two groups of eight male Wistar rats were used for the experiment. AlCl3 group was exposed to AlCl3 orally at a dose of 8.3 mg/kg/day for 60 days, while the control group received only distilled water. After that, the mandibles were collected and submitted to the following analyses: Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray microtomography analysis; blood was also collected for determination of Al circulating levels. Our data showed that AlCl3 was capable of increasing Al circulating levels in blood. It was able to promote changes in the mineral content and triggers significant changes in the mineralized bone microstructure, such as number and thickness of trabeculae, being associated with alveolar bone-loss.


Assuntos
Alumínio , Minerais , Cloreto de Alumínio , Compostos de Alumínio , Animais , Masculino , Ratos , Ratos Wistar
7.
Polymers (Basel) ; 14(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35012060

RESUMO

The interaction of copaiba oil in the polymer matrix of chitosan can produce a favorable synergistic effect and potentiate properties. Indeed, the bioactive principles present in copaiba oil have anti-inflammatory and healing action. In the present work, chitosan membranes containing different contents of copaiba oil copaíba (0.1, 0.5, 1.0 and 5.0% (v/v)) were for the first time investigated. The membranes were developed by the casting method and analyzed for their morphology, degree of intumescence, moisture content, contact angle, Scanning Electron Microscope, and X-ray diffractometry. These chitosan/copaiba oil porous membranes disclosed fluid absorption capacity, hydrophilic surface, and moisture. In addition, the results showed that chitosan membranes with the addition of 1.0% (v/v) of copaiba oil presented oil drops with larger diameters, around 123.78 µm. The highest fluid absorption indexes were observed in chitosan membranes containing 0.1 and 0.5% (v/v) of copaiba oil. In addition, the copaiba oil modified the crystalline structure of chitosan. Such characteristics are expected to favor wound treatment. However, biological studies are necessary for the safe use of chitosan/copaiba oil membrane as a biomaterial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...