Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000493

RESUMO

Plants from the Fabaceae family are widely distributed around the world, especially in Europe, Asia and North America. They are a rich source of isoflavones, compounds with estrogen-like activity, which are suspected of having a chemopreventive effect against hormone-dependent cancers. Following the PRISMA guidelines, we conducted a systematic review aimed at assessing the impact of Fabaceae plant extracts on hormone-dependent cancer cells and the content of active compounds in plant raw materials. We analyzed the results of 63 articles from in vitro and in vivo studies describing the effect of plant extracts containing isoflavones on cancer cells, along with their anti-inflammatory and antioxidant potential. In the process, we determined the research limitations and future research directions. The collected results indicate the plant species with potentially high contents of phytoestrogens and anti-inflammatory, antioxidant and cytotoxic properties. They point to the potential use of plants in the diet as a source of compounds offering cancer prevention.


Assuntos
Fabaceae , Isoflavonas , Neoplasias , Extratos Vegetais , Humanos , Isoflavonas/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias/prevenção & controle , Antioxidantes/farmacologia , Animais , Quimioprevenção/métodos , Fitoestrógenos/farmacologia , Anti-Inflamatórios/farmacologia
2.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612798

RESUMO

Brassica vegetables are widely consumed all over the world, especially in North America, Asia, and Europe. They are a rich source of sulfur compounds, such as glucosinolates (GLSs) and isothiocyanates (ITCs), which provide health benefits but are also suspected of having a goitrogenic effect. Adhering to PRISMA guidelines, we conducted a systematic review to assess the impact of dietary interventions on thyroid function, in terms of the potential risk for people with thyroid dysfunctions. We analyzed the results of 123 articles of in vitro, animal, and human studies, describing the impact of brassica plants and extracts on thyroid mass and histology, blood levels of TSH, T3, T4, iodine uptake, and the effect on thyroid cancer cells. We also presented the mechanisms of the goitrogenic potential of GLSs and ITCs, the limitations of the studies included, as well as further research directions. The vast majority of the results cast doubt on previous assumptions claiming that brassica plants have antithyroid effects in humans. Instead, they indicate that including brassica vegetables in the daily diet, particularly when accompanied by adequate iodine intake, poses no adverse effects on thyroid function.


Assuntos
Brassica , Bócio , Iodo , Animais , Humanos , Verduras , Isotiocianatos , Glucosinolatos
3.
Life (Basel) ; 13(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37109575

RESUMO

Inflammation is a response of the organism to an external factor that disrupts its natural homeostasis, and it helps to eliminate the cause of tissue injury. However, sometimes the body's response is highly inadequate and the inflammation may become chronic. Thus, the search for novel anti-inflammatory agents is still needed. One of the groups of natural compounds that attract interest in this context is lichen metabolites, with usnic acid (UA) as the most promising candidate. The compound reveals a broad spectrum of pharmacological properties, among which anti-inflammatory properties have been studied both in vitro and in vivo. The aim of this review was to gather and critically evaluate the results of the so-far published data on the anti-inflammatory properties of UA. Despite some limitations and shortcomings of the studies included in this review, it can be concluded that UA has interesting anti-inflammatory potential. Further research should be directed at the (i) elucidation of the molecular mechanism of UA; (ii) verification of its safety; (iii) comparison of the efficacy and toxicity of UA enantiomers; (iv) design of UA derivatives with improved physicochemical properties and pharmacological activity; and (v) use of certain forms or delivery carriers of UA, especially in its topical application.

4.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838911

RESUMO

Erucic acid (EA) is monounsaturated fatty acid (22:1 n-9), synthesized in the seeds of many plants from the Brassicaceae family, with Brassica napus, B. rapa, or B. carinata considered as its richest source. As the compound has been blamed for the poisoning effect in Toxic Oil Syndrome, and some data indicated its cardiotoxicity to rats, EA has been for decades classified as toxic substance, the use of which should be avoided. However, the cardiac adverse effects of EA have not been confirmed in humans, and the experiments in animal models had many limitations. Thus, the aim of this review was to present the results of the so far published studies on both toxic, and pharmacological properties of EA, trying to answer the question on its future medicinal use. Despite the ambiguous and relatively small data on toxic and beneficial effects of EA it seems that the compound is worth investigating. Further research should be particularly directed at the verification EA toxicity, more in-depth studies on its neuroprotective and cytotoxic properties, but also its use in combination with other drugs, as well as its role as a drug carrier.


Assuntos
Brassica napus , Ácidos Erúcicos , Humanos , Ratos , Animais , Ácidos Graxos Monoinsaturados , Sementes
5.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677781

RESUMO

This study aimed to examine the influence of the addition of a precursor (phenylalanine) on the accumulation of secondary metabolites in agitated shoot cultures of Ruta graveolens. Cultures were grown on Linsmaier and Skoog (LS) medium, with plant growth regulators (0.1 mg/L α-naphthaleneacetic acid-NAA-and 0.1 mg/L 6-benzylaminopurine-BAP). Phenylalanine was added to the cultures at a concentration of 1.25 g/L after 4 and 5 weeks of growth cycles. Biomass was collected after 2, 4, and 7 days of precursor addition. Both control and experimental cultures had the same secondary metabolites accumulated. Using the HPLC method, linear furanocoumarins (bergapten, isoimperatorin, isopimpinellin, psoralen, and xanthotoxin), furoquinoline alkaloids (γ-fagarine, 7-isopentenyloxy-γ-fagarine, and skimmianine), and catechin were detected and quantified in the methanolic extracts. In turn, phenolic acids, such as gallic acid, protocatechuic acid, p-hydroxybenzoic acid, syringic acid, p-coumaric acid, and ferulic acid were detected in hydrolysates. The production of phenolic acids and catechin (1.5-fold) was significantly increased by the addition of precursor, while there was no significant effect on the production of coumarins and alkaloids. The highest total content of phenolic acids (109 mg/100 g DW) was obtained on the second day of phenylalanine addition (the fourth week of growth cycles). The dominant phenolic compounds were p-coumaric acid (maximum content 64.3 mg/100 g DW) and ferulic acid (maximum content 35.6 mg/100 g DW). In the case of catechins, the highest total content (66 mg/100 g DW) was obtained on the third day of precursor addition (the fourth week of growth cycles). This study is the first to document the effect of feeding the culture medium with phenylalanine on the accumulation of bioactive metabolites in in vitro cultures of R. graveolens.


Assuntos
Alcaloides , Catequina , Ruta , Fenilalanina/metabolismo , Catequina/metabolismo , Alcaloides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...