Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918450

RESUMO

A series of cycloplatinated(II) complexes with general formula of [PtMe(Vpy)(PR3)], Vpy = 2-vinylpyridine and PR3 = PPh3 (1a); PPh2Me (1b); PPhMe2 (1c), were synthesized and characterized by means of spectroscopic methods. These cycloplatinated(II) complexes were luminescent at room temperature in the yellow-orange region's structured bands. The PPhMe2 derivative was the strongest emissive among the complexes, and the complex with PPh3 was the weakest one. Similar to many luminescent cycloplatinated(II) complexes, the emission was mainly localized on the Vpy cyclometalated ligand as the main chromophoric moiety. The present cycloplatinated(II) complexes were oxidatively reacted with MeI to yield the corresponding cycloplatinated(IV) complexes. The kinetic studies of the reaction point out to an SN2 mechanism. The complex with PPhMe2 ligand exhibited the fastest oxidative addition reaction due to the most electron-rich Pt(II) center in its structure, whereas the PPh3 derivative showed the slowest one. Interestingly, for the PPhMe2 analog, the trans isomer was stable and could be isolated as both kinetic and thermodynamic product, while the other two underwent trans to cis isomerization.

2.
Anticancer Agents Med Chem ; 19(14): 1762-1774, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267879

RESUMO

BACKGROUND: Due to their unique properties and potential applications in variety of areas, recently, a special attention is given to the binuclear platinum (II) complexes. They reveal a highly tunable features upon the modification of their cyclometallating and bridging ligands. OBJECTIVE: The aim of this study was to evaluate the anticancer activity and DNA binding affinity of three binuclear platinum (II) complexes, including ht-[(p-FC6H4)Pt(µ-PN)(µ-NP)PtMe2](CF3CO2)(1), ht-[(p- MeC6H4)Pt(µ-PN)(µ-NP)Pt(p MeC6H4) Me] (CF3CO2)(2) and ht-[Pt2Me3(µ-PN)2](CF3CO2) (3). METHODS: MTT assay was performed to study the cell viability of Jurkat and MCF-7 lines against synthesized complexes, followed by apoptosis detection experiments. Several spectroscopic methods with molecular docking simulation were also used to investigate the detail of interaction of these platinum complexes with DNA. RESULTS: Cell viability assay demonstrated a notable level of cytotoxicity for the synthetic platinum complexes. Further studies proved that a pathway of cell signaling initiating the apoptosis might be activated by these complexes, particularly in the case of complexes 1 and 2. The results of both UV-visible and CD measurements showed the significant ability of these complexes to interact with DNA. While fluorescence data revealed that these complexes cannot enter DNA structure by intercalation, molecular docking assessment proved their DNA groove binding ability. CONCLUSION: The remarkable apoptosis inducing activity of the binuclear platinum complexes 1 and 2 and their considerable interaction with DNA suggest them as the potential antitumor medicines.


Assuntos
Antineoplásicos/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Simulação de Acoplamento Molecular , Compostos Organoplatínicos/farmacologia , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células Jurkat , Células MCF-7 , Estrutura Molecular , Compostos Organoplatínicos/química , Relação Estrutura-Atividade
3.
Dalton Trans ; 48(17): 5713-5724, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30968899

RESUMO

Described here is the synthesis and characterization of heteroleptic binuclear platinum(ii) complexes of the type [Pt2(µ-bpy-2H)(S^S)2] and [Pt2(µ-bpy-2H)(L)2(X)2], containing a 2,2'-bipyridine-based double rollover cycloplatinated core (Pt(µ-bpy-2H)Pt), in combination with the anionic S^S- chelate ligands di(ethyl)dithiocarbamate (dedtc) and O,O'-di(cyclohexyl)dithiophosphate (dcdtp) or non-chelating L/X ancillary ligands (PPh3/Me, t-BuNC/Me, PPh3/SCN and PPh3/N3). The new complexes were characterized using multinuclear (1H, 31P and 195Pt) NMR spectroscopy and some of them additionally using single crystal X-ray diffraction. The absorption and photoluminescence of the complexes show a strong dependence on the ancillary ligands. Upon excitation at 365 nm, in a CH2Cl2 rigid matrix (77 K), the complexes exhibit structured emission bands with λmax between 488 nm and 525 nm and vibrational spacing around 1350 cm-1, indicating the excited states centered on the cyclometalated ligand (3ILCT) with some mixing 3MLCT characteristics. In the case of the PPh3/N3 complex, a dual emission band (orange color) is observed in the solid state at 298 K for which the low energy band arises from an aggregation-induced emission (AIE). Upon lowering the temperature (77 K), thermochromism is observed (orange to yellow) which is accompanied by the intensification of the high energy band (ligand-centered structured band). Finally, in order to rationalize the obtained photophysical data, complete DFT (density functional theory) and TD-DFT (time-dependent DFT) calculations were performed on the selected complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...