Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Allergy ; 12(10): e12197, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36225266

RESUMO

Background: Peanut allergy is a frequent cause of food allergy and potentially life-threatening. Within this interdisciplinary research approach, we aim to unravel the complex mechanisms of peanut allergy. As a first step were applied in an exploratory manner the analysis of peanut allergic versus non-allergic controls. Methods: Biosamples were studied regarding DNA methylation signatures, gut microbiome, adaptive and innate immune cell populations, soluble signaling molecules and allergen-reactive antibody specificities. We applied a scalable systems medicine computational workflow to the assembled data. Results: We identified combined cellular and soluble biomarker signatures that stratify donors into peanut-allergic and non-allergic with high specificity. DNA methylation profiling revealed various genes of interest and stool microbiota differences in bacteria abundances. Conclusion: By extending our findings to a larger set of patients (e.g., children vs. adults), we will establish predictors for food allergy and tolerance and translate these as for example, indicators for interventional studies.

2.
Stem Cells ; 40(2): 175-189, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257173

RESUMO

Hox genes play key roles in the anterior-posterior (AP) specification of all 3 germ layers during different developmental stages. It is only partially understood how they function in widely different developmental contexts, particularly with regards to extracellular signaling, and to what extent their function can be harnessed to guide cell specification in vitro. Here, we addressed the role of Hoxb1 in 2 distinct developmental contexts; in mouse embryonic stem cells (mES)-derived neuromesodermal progenitors (NMPs) and hindbrain neural progenitors. We found that Hoxb1 promotes NMP survival through the upregulation of Fgf8, Fgf17, and other components of Fgf signaling as well as the repression of components of the apoptotic pathway. Additionally, it upregulates other anterior Hox genes suggesting that it plays an active role in the early steps of AP specification. In neural progenitors, Hoxb1 synergizes with shh to repress anterior and dorsal neural markers, promote the expression of ventral neural markers and direct the specification of facial branchiomotorneuron (FBM)-like progenitors. Hoxb1 and shh synergize in regulating the expression of diverse signals and signaling molecules, including the Ret tyrosine kinase receptor. Finally, Hoxb1 synergizes with exogenous Glial cell line-derived neurotrophic factor (GDNF) to strengthen Ret expression and further promote the generation of FBM-like progenitors. Facial branchiomotorneuron-like progenitors survived for at least 6 months and differentiated into postmitotic neurons after orthotopic transplantation near the facial nucleus of adult mice. These results suggested that the patterning activity of Hox genes in combination with downstream signaling molecules can be harnessed for the generation of defined neural populations and transplantations with implications for neurodegenerative diseases.


Assuntos
Proteínas de Homeodomínio/metabolismo , Rombencéfalo , Animais , Diferenciação Celular/genética , Sobrevivência Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos , Rombencéfalo/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
3.
J Allergy Clin Immunol ; 149(6): 2053-2061.e6, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35240143

RESUMO

BACKGROUND: Thymic stromal lymphopoietin (TSLP) promotes TH2 inflammation and is deeply intertwined with inflammatory dermatoses like atopic dermatitis. The mechanisms regulating TSLP are poorly defined. OBJECTIVE: We investigated whether and by what mechanisms mast cells (MCs) foster TSLP responses in the cutaneous environment. METHODS: Ex vivo and in vivo skin MC degranulation was induced by compound 48/80 in wild-type protease-activated receptor 2 (PAR-2)- and MC-deficient mice in the presence or absence of neutralizing antibodies, antagonists, or exogenous mouse MC protease 6 (mMCP6). Primary human keratinocytes and murine skin explants were stimulated with lysates/supernatants of human skin MCs, purified tryptase, or MC lysate diminished of tryptase. Chymase and histamine were also used. TSLP was quantified by ELISA, real-time quantitative PCR, and immunofluorescence staining. RESULTS: Mas-related G protein-coupled receptor X2 (Mrgprb2) activation elicited TSLP in intact skin, mainly in the epidermis. Responses were strictly MC dependent and relied on PAR-2. Complementarily, TSLP was elicited by tryptase in murine skin explants. Exogenous mMCP6 could fully restore responsiveness in MC-deficient murine skin explants. Conversely, PAR-2 knockout mice were unresponsive to mMCP6 while displaying increased responsiveness to other inflammatory pathways, such as IL-1α. Indeed, IL-1α acted in concert with tryptase. In primary human keratinocytes, MC-elicited TSLP generation was likewise abolished by tryptase inhibition or elimination. Chymase and histamine did not affect TSLP production, but histamine triggered IL-6, IL-8, and stem cell factor. CONCLUSION: MCs communicate with kerationocytes more broadly than hitherto suspected. The tryptase/PAR-2 axis is a crucial component of this cross talk, underlying MC-dependent stimulation of TSLP in neighboring kerationocytes. Interference specifically with MC tryptase may offer a treatment option for disorders initiated or perpetuated by aberrant TSLP, such as atopic dermatitis.


Assuntos
Dermatite Atópica , Receptor PAR-2 , Animais , Quimases/metabolismo , Citocinas/metabolismo , Histamina/metabolismo , Humanos , Queratinócitos/metabolismo , Mastócitos/metabolismo , Camundongos , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Triptases/metabolismo , Linfopoietina do Estroma do Timo
4.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35202004

RESUMO

BackgroundThere is a need to support the diagnosis of anaphylaxis by objective markers. miRNAs are promising noncoding RNA species that may serve as serological biomarkers, but their use in diagnosing anaphylaxis has not been systematically studied to our knowledge. We aimed to comprehensively investigate serum biomarker profiles (proteins, lipids, and miRNAs) to support the diagnosis of anaphylaxis.MethodsAdult patients admitted to the emergency room with a diagnosis of anaphylaxis (<3 hours) were included. Blood samples were taken upon emergency room arrival and 1 month later.ResultsNext-generation sequencing of 18 samples (6 patients with anaphylaxis in both acute and nonacute condition, for 12 total samples, and 6 healthy controls) identified hsa-miR-451a to be elevated during anaphylaxis, which was verified by quantitative real-time PCR in the remaining cohort. The random forest classifier enabled us to classify anaphylaxis with high accuracy using a composite model. We identified tryptase, 9α,11ß-PGF2, apolipoprotein A1, and hsa-miR-451a as serological biomarkers of anaphylaxis. These predictors qualified as serological biomarkers individually but performed better in combination.ConclusionUnexpectedly, hsa-miR-451a was identified as the most relevant biomarker in our data set. We were also able to distinguish between patients with a history of anaphylaxis and healthy individuals with higher accuracy than any other available model. Future studies will need to verify miRNA biomarker utility in real-life clinical settings.FundingThis work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the clinical research unit (CRU339): Food Allergy and Tolerance (FOOD@) (project number 409525714) and a grant to MW (Wo541-16-2, project number 264921598), as well as by FOOD@ project numbers 428094283 and 428447634.


Assuntos
Anafilaxia , MicroRNAs , Anafilaxia/sangue , Anafilaxia/diagnóstico , Biomarcadores/sangue , Estudos de Coortes , Humanos , MicroRNAs/sangue , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
Life Sci ; 291: 120116, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740576

RESUMO

AIMS: Adenoviruses that have CNGRCVSGCAGRC peptide inserted into fiber (AdFNGR) or hexon (AdHNGR) protein, respectively, showed increased transduction of endothelial cells. In this study we investigated if cysteines within the CNGRCVSGCAGRC sequence inserted into Ad serotype 5 Ad5 fiber or hexon protein form disulfide bond(s) and whether they play a role in retargeting potential of AdFNGR and AdHNGR. METHODS: Transduction efficiency of adenoviruses was done by counting infected cells under the microscope. Adenovirus attachment and internalization were measured by qPCR. Flow cytometry was used to evaluate the expression of CD13 and integrins. Gene knockdown was achieved by transfection of small interfering RNA. Mass spectrometry was used for determining disulfide bonds in adenovirus fiber and hexon protein. Molecular modeling was use to predict interaction of CNGRCVSGCAGRC peptide and CD13. KEY FINDINGS: AdFNGR and AdHNGR attach better to CD13 and/or αvß3 integrin-positive cells than Adwt. Reducing disulfide bonds using DTT decreased transduction efficiency and attachment of both AdFNGR and AdHNGR. Cysteins from CNGRCVSGCAGRC peptide within AdHNGR do not form disulfide bonds. Knockdown of αvß3 integrin reduced increased transduction efficiency of both AdFNGR and AdHNGR, while CD13 knockdown had no effect, indicating that retargeting properties of these viruses rely mainly on αvß3 integrin expression. SIGNIFICANCE: Insertion site of NGR-containing peptides as well as NGR flanking residues are critical for receptor binding affinity/specificity and transduction efficiency of NGR retargeted adenoviral vectors.


Assuntos
Adenoviridae/genética , Adenoviridae/metabolismo , Integrina alfaVbeta3/fisiologia , Linhagem Celular Tumoral , Dissulfetos/química , Células Endoteliais/metabolismo , Vetores Genéticos/genética , Células HEK293 , Humanos , Integrina alfaVbeta3/metabolismo , Oligopeptídeos/farmacologia , Transdução Genética/métodos , Transfecção/métodos
6.
Elife ; 92020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804075

RESUMO

Perturbation of addition of second heart field (SHF) cardiac progenitor cells to the poles of the heart tube results in congenital heart defects (CHD). The transcriptional programs and upstream regulatory events operating in different subpopulations of the SHF remain unclear. Here, we profile the transcriptome and chromatin accessibility of anterior and posterior SHF sub-populations at genome-wide levels and demonstrate that Hoxb1 negatively regulates differentiation in the posterior SHF. Spatial mis-expression of Hoxb1 in the anterior SHF results in hypoplastic right ventricle. Activation of Hoxb1 in embryonic stem cells arrests cardiac differentiation, whereas Hoxb1-deficient mouse embryos display premature cardiac differentiation. Moreover, ectopic differentiation in the posterior SHF of embryos lacking both Hoxb1 and its paralog Hoxa1 results in atrioventricular septal defects. Our results show that Hoxb1 plays a key role in patterning cardiac progenitor cells that contribute to both cardiac poles and provide new insights into the pathogenesis of CHD.


Assuntos
Cardiopatias Congênitas/genética , Proteínas de Homeodomínio/genética , Células-Tronco/metabolismo , Transcriptoma , Animais , Cromatina/metabolismo , Genes Homeobox , Cardiopatias Congênitas/embriologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...