Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535445

RESUMO

New technologies for management, monitoring, and control of spatio-temporal crop variability in precision viticulture scenarios are numerous. Remote sensing relies on sensors able to provide useful data for the improvement of management efficiency and the optimization of inputs. unmanned aerial systems (UASs) are the newest and most versatile tools, characterized by high precision and accuracy, flexibility, and low operating costs. The work aims at providing a complete overview of the application of UASs in precision viticulture, focusing on the different application purposes, the applied equipment, the potential of technologies combined with UASs for identifying vineyards' variability. The review discusses the potential of UASs in viticulture by distinguishing five areas of application: rows segmentation and crop features detection techniques; vineyard variability monitoring; estimation of row area and volume; disease detection; vigor and prescription maps creation. Technological innovation and low purchase costs make UASs the core tools for decision support in the customary use by winegrowers. The ability of the systems to respond to the current demands for the acquisition of digital technologies in agricultural fields makes UASs a candidate to play an increasingly important role in future scenarios of viticulture application.

2.
PeerJ Comput Sci ; 5: e179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33816832

RESUMO

The individual electronic identification (EID) of cattle based on RFID technology (134.2 kHz ISO standard 11784) will definitely enter into force in European countries as an official means of animal identification from July 2019. Integrating EID with 3D digital images of the animal would lead to the creation of a virtual archive of breeding animals for the evaluation and promotion of morphology associated with economic traits, strategic in beef cattle production. The genetically-encoded morphology of bulls and cows together with the expression in the phenotype were the main drivers of omic technologies of beef cattle production. The evaluation of bulls raised for reproduction is mainly based on the conformation and heritability of traits, which culminates in muscle mass and optimized carcass traits in the offspring destined to be slaughtered. A bottom-up approach by way of SWOT analysis of the current morphological and functional evaluation process for bulls revealed a technological gap. The innovation of the process through the use of smart technologies was tested in the field. The conventional 2D scoring system based on visual inspection by breed experts was carried out on a 3D model of the live animal, which was found to be a faithful reproduction of live animal morphology, thanks to the non significant variance (p > 0.05) of means of the somatic measures determined on the virtual 3D model and on the real bull. The four main groups composing the scoring system of bull morphology can easily be carried out on the 3D model. These are as follows: (1) Muscular condition; (2) Skeletal development; (3) Functional traits; (4) Breed traits. The 3D-Bull model derived from the Structure from Motion (SfM) algorithm displays a high tech profile for the evaluation of animal morphology in an upgraded system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA