Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830312

RESUMO

Campylobacter remains the most prevalent foodborne pathogen bacterium responsible for causing gastroenteritis worldwide. Specifically, this pathogen colonises a ubiquitous range of environments, from poultry, companion pets and livestock animals to humans. The bacterium is uniquely adaptable to various niches, leading to complicated gastroenteritis and, in some cases, difficult to treat due to elevated resistance to certain antibiotics. This increased resistance is currently detected via genomic, clinical or epidemiological studies, with the results highlighting worrying multi-drug resistant (MDR) profiles in many food and clinical isolates. The Campylobacter genome encodes a rich inventory of virulence factors offering the bacterium the ability to influence host immune defences, survive antimicrobials, form biofilms and ultimately boost its infection-inducing potential. The virulence traits responsible for inducing clinical signs are not sufficiently defined because several populations have ample virulence genes with physiological functions that reflect their pathogenicity differences as well as a complement of antimicrobial resistance (AMR) systems. Therefore, exhaustive knowledge of the virulence factors associated with Campylobacter is crucial for collecting molecular insights into the infectivity processes, which could pave the way for new therapeutical targets to combat and control the infection and mitigate the spread of MDR bacteria. This review provides an overview of the spread and prevalence of genetic determinants associated with virulence and antibiotic resistance from studies performed on livestock animals. In addition, we have investigated the relevant coincidental associations between the prevalence of the genes responsible for pathogenic virulence, horizontal gene transfer (HGT) and transmissibility of highly pathogenic Campylobacter strains.

2.
Animals (Basel) ; 11(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063451

RESUMO

(1) Background: Hibernation in pens covered with LFC was associated with high mortality of C. aspersum snails in Romanian snail farms. This three-year study aimed to develop a simple, but effective system for protecting breeders in colder climates. (2) Methods: The first phase investigated the (pre)hibernal burrowing behavior and the overwintering habitat choice. Protective structures based on straw, LFC, and/or HDPE were tested at pilot level (no snails). The most suitable system was applied under farm conditions. (3) Results: Wood and ridge-tile micro shelters were significantly preferred to corrugated iron micro shelters. Burrowing specimens acted as shallow-burrowers, and this behaviorwas significantly more common for looser soils. All pilot systems displayed significantly higher thermal protection efficiency compared to the sole use of LFC. The balance between straw moistening and thermal protection favored using structure soil/LFC/straw/10-cm air cushion/HDPE. Its use yielded significantly higher survival compared to the sole use of LFC. Most hibernating snails clustered together in large groups, attached on the lower surface of micro shelters. Predator occurrence appeared to marginally affect overwintering survival. (4) Conclusions: The "sandwich" system could be an effective solution for overwintering mature C. aspersum snails in colder climates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...