Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559030

RESUMO

Early-life stress increases sensitivity to subsequent stress, which has been observed among humans, other animals, at the level of cellular activity, and at the level of gene expression. However, the molecular mechanisms underlying such long-lasting sensitivity are poorly understood. We tested the hypothesis that persistent changes in transcription and transcriptional potential were maintained at the level of the epigenome, through changes in chromatin. We used a combination of bottom-up mass spectrometry, viral-mediated epigenome-editing, behavioral quantification, and RNA-sequencing in a mouse model of early-life stress, focusing on the ventral tegmental area (VTA), a brain region critically implicated in motivation, reward learning, stress response, and mood and drug disorders. We find that early-life stress in mice alters histone dynamics in VTA and that a majority of these modifications are associated with an open chromatin state that would predict active, primed, or poised gene expression, including enriched histone-3 lysine-4 methylation and the H3K4 monomethylase Setd7. Mimicking ELS through over-expression of Setd7 and enrichment of H3K4me1 in VTA recapitulates ELS-induced behavioral and transcriptional hypersensitivity to future stress. These findings enrich our understanding of the epigenetic mechanisms linking early-life environmental experiences to long-term alterations in stress reactivity within the brain's reward circuitry, with implications for understanding and potentially treating mood and anxiety disorders in humans.

3.
Horm Behav ; 159: 105472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38141539

RESUMO

Proper thyroid function is essential to the developing brain, including dopamine neuron differentiation, growth, and maintenance. Stress across the lifespan impacts thyroid hormone signaling and anxiety disorders and depression have been associated with thyroid dysfunction (both hypo- and hyper-active). However, less is known about how stress during postnatal development impacts thyroid function and related brain development. Our previous work in mice demonstrated that early-life stress (ELS) transiently impinged on expression of a transcription factor in dopamine neurons, Otx2, shown to be regulated by thyroid hormones. We hypothesized that thyroid hormone signaling may link experience of ELS with transcriptional dysregulation within the dopaminergic midbrain, and ultimately behavior. Here, we find that ELS transiently increases thyroid-stimulating hormone levels (inversely related to thyroid signaling) in both male and female mice at P21, an effect which recovers by adolescence. We next tested whether transient treatment of ELS mice with synthetic thyroid hormone (levothyroxine, LT4) could ameliorate the impact of ELS on sensitivity to future stress, and on expression of genes related to dopamine neuron development and maintenance, thyroid signaling, and plasticity within the ventral tegmental area. Among male mice, but not females, juvenile LT4 treatment prevented hypersensitivity to adult stress. We also found that rescuing developmental deficits in thyroid hormone signaling after ELS restored levels of some genes altered directly by ELS, and prevented alterations in expression of other genes sensitive to the second hit of adult stress. These findings suggest that thyroid signaling mediates the deleterious impact of ELS on VTA development, and that temporary treatment of hypothyroidism after ELS may be sufficient to prevent future stress hypersensitivity.


Assuntos
Experiências Adversas da Infância , Área Tegmentar Ventral , Camundongos , Animais , Masculino , Feminino , Área Tegmentar Ventral/metabolismo , Neurônios Dopaminérgicos/metabolismo , Hormônios Tireóideos/metabolismo , Expressão Gênica , Estresse Psicológico/genética
4.
Proc Natl Acad Sci U S A ; 120(49): e2305776120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011563

RESUMO

Individuals with a history of early-life stress (ELS) tend to have an altered course of depression and lower treatment response rates. Research suggests that ELS alters brain development, but the molecular changes in the brain following ELS that may mediate altered antidepressant response have not been systematically studied. Sex and gender also impact the risk of depression and treatment response. Here, we leveraged existing RNA sequencing datasets from 1) blood samples from depressed female- and male-identifying patients treated with escitalopram or desvenlafaxine and assessed for treatment response or failure; 2) the nucleus accumbens (NAc) of female and male mice exposed to ELS and/or adult stress; and 3) the NAc of mice after adult stress, antidepressant treatment with imipramine or ketamine, and assessed for treatment response or failure. We find that transcriptomic signatures of adult stress after a history of ELS correspond with transcriptomic signatures of treatment nonresponse, across species and multiple classes of antidepressants. Transcriptomic correspondence with treatment outcome was stronger among females and weaker among males. We next pharmacologically tested these predictions in our mouse model of early-life and adult social defeat stress and treatment with either chronic escitalopram or acute ketamine. Among female mice, the strongest predictor of behavior was an interaction between ELS and ketamine treatment. Among males, however, early experience and treatment were poor predictors of behavior, mirroring our bioinformatic predictions. These studies provide neurobiological evidence for molecular adaptations in the brain related to sex and ELS that contribute to antidepressant treatment response.


Assuntos
Experiências Adversas da Infância , Ketamina , Humanos , Masculino , Feminino , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/genética , Escitalopram , Ketamina/farmacologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Resultado do Tratamento , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética
5.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662236

RESUMO

Proper thyroid function is essential to the developing brain, including dopamine neuron differentiation, growth, and maintenance. Stress across the lifespan impacts thyroid hormone signaling and anxiety disorders and depression have been associated with thyroid dysfunction (both hypo- and hyper-active). However, less is known about how stress during postnatal development impacts thyroid function and related brain development. Our previous work in mice demonstrated that early-life stress (ELS) transiently impinged on expression of a transcription factor in dopamine neurons shown to be regulated by thyroid hormones. We hypothesized that thyroid hormone signaling may link experience of ELS with transcriptional dysregulation within the dopaminergic midbrain, and ultimately behavior. Here, we find that ELS transiently increases thyroid-stimulating hormone levels (inversely related to thyroid signaling) in both male and female mice at P21, an effect which recovers by adolescence. We next tested whether transient treatment of ELS mice with synthetic thyroid hormone (levothyroxine, LT4) could ameliorate the impact of ELS on sensitivity to future stress, and on expression of genes related to dopamine neuron development and maintenance, thyroid signaling, and plasticity within the ventral tegmental area. Among male mice, but not females, juvenile LT4 treatment prevented hypersensitivity to adult stress. We also found that rescuing developmental deficits in thyroid hormone signaling after ELS restored levels of some genes altered directly by ELS, and prevented alterations in expression of other genes sensitive to the second hit of adult stress. These findings suggest that thyroid signaling mediates the deleterious impact of ELS on VTA development, and that temporary treatment of hypothyroidism after ELS may be sufficient to prevent future stress hypersensitivity.

6.
Neuron ; 111(22): 3541-3553.e8, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657441

RESUMO

Dopamine neurons of the ventral tegmental area (VTADA) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear whether the same or different VTADA neurons encode these different stimuli. To address this question, we performed two-photon calcium imaging in mice presented with food and conspecifics and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that increasing motivation for one stimulus increases overlap. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone-related genes in individual VTADA neurons. Taken together, our functional and transcriptional data suggest overlapping VTADA populations underlie food and social motivation.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Camundongos , Animais , Neurônios Dopaminérgicos/fisiologia , Alimentos , Motivação
7.
J Neurosci ; 43(34): 5996-6009, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37429717

RESUMO

Early-life stress (ELS) is one of the strongest lifetime risk factors for depression, anxiety, suicide, and other psychiatric disorders, particularly after facing additional stressful events later in life. Human and animal studies demonstrate that ELS sensitizes individuals to subsequent stress. However, the neurobiological basis of such stress sensitization remains largely unexplored. We hypothesized that ELS-induced stress sensitization would be detectable at the level of neuronal ensembles, such that cells activated by ELS would be more reactive to adult stress. To test this, we leveraged transgenic mice to genetically tag, track, and manipulate experience-activated neurons. We found that in both male and female mice, ELS-activated neurons within the nucleus accumbens (NAc), and to a lesser extent the medial prefrontal cortex, were preferentially reactivated by adult stress. To test whether reactivation of ELS-activated ensembles in the NAc contributes to stress hypersensitivity, we expressed hM4Dis receptor in control or ELS-activated neurons of pups and chemogenetically inhibited their activity during experience of adult stress. Inhibition of ELS-activated NAc neurons, but not control-tagged neurons, ameliorated social avoidance behavior following chronic social defeat stress in males. These data provide evidence that ELS-induced stress hypersensitivity is encoded at the level of corticolimbic neuronal ensembles.SIGNIFICANCE STATEMENT Early-life stress enhances sensitivity to stress later in life, yet the mechanisms of such stress sensitization are largely unknown. Here, we show that neuronal ensembles in corticolimbic brain regions remain hypersensitive to stress across the life span, and quieting these ensembles during experience of adult stress rescues stress hypersensitivity.


Assuntos
Experiências Adversas da Infância , Córtex Pré-Frontal , Adulto , Humanos , Masculino , Camundongos , Feminino , Animais , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/psicologia , Neurônios , Ansiedade , Camundongos Transgênicos
8.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37293057

RESUMO

Dopamine neurons of the ventral tegmental area (VTA DA ) respond to food and social stimuli and contribute to both forms of motivation. However, it is unclear if the same or different VTA DA neurons encode these different stimuli. To address this question, we performed 2-photon calcium imaging in mice presented with food and conspecifics, and found statistically significant overlap in the populations responsive to both stimuli. Both hunger and opposite-sex social experience further increased the proportion of neurons that respond to both stimuli, implying that modifying motivation for one stimulus affects responses to both stimuli. In addition, single-nucleus RNA sequencing revealed significant co-expression of feeding- and social-hormone related genes in individual VTA DA neurons. Taken together, our functional and transcriptional data suggest overlapping VTA DA populations underlie food and social motivation.

9.
Nat Neurosci ; 26(7): 1229-1244, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291337

RESUMO

The development of physical dependence and addiction disorders due to misuse of opioid analgesics is a major concern with pain therapeutics. We developed a mouse model of oxycodone exposure and subsequent withdrawal in the presence or absence of chronic neuropathic pain. Oxycodone withdrawal alone triggered robust gene expression adaptations in the nucleus accumbens, medial prefrontal cortex and ventral tegmental area, with numerous genes and pathways selectively affected by oxycodone withdrawal in mice with peripheral nerve injury. Pathway analysis predicted that histone deacetylase (HDAC) 1 is a top upstream regulator in opioid withdrawal in nucleus accumbens and medial prefrontal cortex. The novel HDAC1/HDAC2 inhibitor, Regenacy Brain Class I HDAC Inhibitor (RBC1HI), attenuated behavioral manifestations of oxycodone withdrawal, especially in mice with neuropathic pain. These findings suggest that inhibition of HDAC1/HDAC2 may provide an avenue for patients with chronic pain who are dependent on opioids to transition to non-opioid analgesics.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Camundongos , Animais , Oxicodona/farmacologia , Entorpecentes , Histona Desacetilase 1/metabolismo , Recompensa , Analgésicos Opioides/farmacologia , Histona Desacetilase 2/metabolismo
10.
Horm Behav ; 152: 105364, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37087766

RESUMO

Parental care is diversely demonstrated across the animal kingdom, such that active practitioners and repertoires of parental behavior vary dramatically between and within taxa. For mammals, maternal care is ubiquitous while paternal and alloparental care are rare. The African striped mouse, a rodent species in the family Muridae, demonstrates maternal, paternal, and alloparental care. Because socio-environmental factors can considerably influence the development of their social behavior, including that of paternal and alloparental care, African striped mice are considered socially flexible. Here, we highlight African striped mice as a new model for the neurobiological study of male parental care. We first provide essential background information on the species' natural ecological setting and reproductive behavior, as well as the species-relevant interaction between ecology and reproduction. We then introduce the nature of maternal, paternal, and alloparental care in the species. Lastly, we provide a review of existing developmental and neurobiological perspectives and highlight potential avenues for future research.


Assuntos
Murinae , Comportamento Social , Animais , Camundongos , Masculino , Humanos , Reprodução , Pai
11.
Genes Brain Behav ; 22(1): e12830, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36412100

RESUMO

Chronic pain involves both central and peripheral neuronal plasticity that encompasses changes in the brain, spinal cord, and peripheral nociceptors. Within the forebrain, mesocorticolimbic regions associated with emotional regulation have recently been shown to exhibit lasting gene expression changes in models of chronic pain. To better understand how such enduring transcriptional changes might be regulated within brain structures associated with processing of pain or affect, we examined epigenetic modifications involved with active or permissive transcriptional states (histone H3 lysine 4 mono and trimethylation, and histone H3 lysine 27 acetylation) in periaqueductal gray (PAG), lateral hypothalamus (LH), nucleus accumbens (NAc), and ventral tegmental area (VTA) 5 weeks after sciatic nerve injury in mice to model chronic pain. For both male and female mice in chronic pain, we observed an overall trend for a reduction of these epigenetic markers in periaqueductal gray, LH, and NAc, but not VTA. Moreover, we discovered that some epigenetic modifications exhibited changes associated with pain history, while others were associated with individual differences in pain sensitivity. When taken together, these results suggest that nerve injury leads to chronic chromatin-mediated suppression of transcription in key limbic brain structures and circuits, which may underlie enduring changes in pain processing and sensitivity within these systems.


Assuntos
Dor Crônica , Neuralgia , Feminino , Camundongos , Masculino , Animais , Dor Crônica/genética , Histonas/genética , Código das Histonas , Lisina/genética , Neuralgia/genética , Neuralgia/metabolismo
12.
Biol Psychiatry ; 92(11): 895-906, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182529

RESUMO

BACKGROUND: Social experiences influence susceptibility to substance use disorder. The adolescent period is associated with the development of social reward and is exceptionally sensitive to disruptions to reward-associated behaviors by social experiences. Social isolation (SI) during adolescence alters anxiety- and reward-related behaviors in adult males, but little is known about females. The medial amygdala (meA) is a likely candidate for the modulation of social influence on drug reward because it regulates social reward, develops during adolescence, and is sensitive to social stress. However, little is known regarding how the meA responds to drugs of abuse. METHODS: We used adolescent SI coupled with RNA sequencing to better understand the molecular mechanisms underlying meA regulation of social influence on reward. RESULTS: We show that SI in adolescence, a well-established preclinical model for addiction susceptibility, enhances preference for cocaine in male but not in female mice and alters cocaine-induced protein and transcriptional profiles within the adult meA particularly in males. To determine whether transcriptional mechanisms within the meA are important for these behavioral effects, we manipulated Crym expression, a sex-specific key driver gene identified through differential gene expression and coexpression network analyses, specifically in meA neurons. Overexpression of Crym, but not another key driver that did not meet our sex-specific criteria, recapitulated the behavioral and transcriptional effects of adolescent SI. CONCLUSIONS: These results show that the meA is essential for modulating the sex-specific effects of social experience on drug reward and establish Crym as a critical mediator of sex-specific behavioral and transcriptional plasticity.


Assuntos
Cocaína , Animais , Masculino , Feminino , Camundongos , Cocaína/farmacologia , Cocaína/metabolismo , Cristalinas mu , Recompensa , Neurônios/metabolismo , Tonsila do Cerebelo/metabolismo
13.
Biol Psychiatry ; 92(12): 942-951, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075764

RESUMO

BACKGROUND: Major depressive disorder is one of the most commonly diagnosed mental illnesses worldwide, with a higher prevalence in women than in men. Although currently available pharmacological therapeutics help many individuals, they are not effective for most. Animal models have been important for the discovery of molecular alterations in stress and depression, but difficulties in adapting animal models of depression for females has impeded progress in developing novel therapeutic treatments that may be more efficacious for women. METHODS: Using the California mouse social defeat model, we took a multidisciplinary approach to identify stress-sensitive molecular targets that have translational relevance for women. We determined the impact of stress on transcriptional profiles in male and female California mouse nucleus accumbens (NAc) and compared these results with data from postmortem samples of the NAc from men and women diagnosed with major depressive disorder. RESULTS: Our cross-species computational analyses identified Rgs2 (regulator of G protein signaling 2) as a transcript downregulated by social defeat stress in female California mice and in women with major depressive disorder. RGS2 plays a key role in signal regulation of neuropeptide and neurotransmitter receptors. Viral vector-mediated overexpression of Rgs2 in the NAc restored social approach and sucrose preference in stressed female California mice. CONCLUSIONS: These studies show that Rgs2 acting in the NAc has functional properties that translate to changes in anxiety- and depression-related behavior. Future studies should investigate whether targeting Rgs2 represents a novel target for treatment-resistant depression in women.


Assuntos
Transtorno Depressivo Maior , Núcleo Accumbens , Animais , Feminino , Masculino , Camundongos , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Estresse Psicológico , Modelos Animais de Doenças , Comportamento Animal , Comportamento Social , Camundongos Endogâmicos C57BL
14.
Dev Psychobiol ; 64(1): e22227, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35050507

RESUMO

We explored the associations between early-life adversity and migration-related stress on the mental health of Central American and Mexican migrating children held in United States immigration detention facilities. Migrating children have high rates of trauma exposure prior to and during migration. Early-life adversity increases risk for developing mental health disorders. Forced separation of migrating children from their parents at the United States-Mexico border potentially exacerbates this risk. We sought to determine whether exposure to trauma prior to immigration and specific features of immigration detention were associated with posttraumatic stress symptomatology. We interviewed parents of 84 migrating children (ages 1-17) after families were released from immigration detention facilities to assess children's migration- and detention-related experiences. A modified version of the University of California Los Angeles Posttraumatic Stress Disorder (PTSD) Reaction Index was administered to assess children's PTSD symptoms and document trauma exposure. A total of 97.4% of children experienced at least one premigration traumatic event. PTSD symptom severity was most strongly predicted by premigration trauma and duration of parent-child separation. This study contributes to a growing empirical literature documenting that early-life adversity increases risk of developing mental health disorders, particularly following additional stress exposure, and that remaining with parents during immigration detention may help mitigate children's stress response.


Assuntos
Emigração e Imigração , Hispânico ou Latino , Adolescente , América Central , Criança , Pré-Escolar , Humanos , Lactente , México , Avaliação de Resultados em Cuidados de Saúde , Estados Unidos
15.
Biol Psychiatry ; 91(4): 346-358, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130857

RESUMO

BACKGROUND: Obstructive sleep apnea, characterized by sleep fragmentation and chronic intermittent hypoxia (CIH), is a risk factor for Alzheimer's disease (AD) progression. Recent epidemiological studies point to CIH as the best predictor of developing cognitive decline and AD in older adults with obstructive sleep apnea. However, the precise underlying mechanisms remain unknown. This study was undertaken to evaluate the effect of CIH on pathological human tau seeding, propagation, and accumulation; cognition; synaptic plasticity; neuronal network excitability; and gene expression profiles in a P301S human mutant tau mouse model of AD and related tauopathies. METHODS: We exposed 4- to 4.5-month-old male P301S and wild-type mice to an 8-week CIH protocol (6-min cycle: 21% O2 to 8% O2 to 21% O2, 80 cycles per 8 hours during daytime) and assessed its effect on tau pathology and various AD-related phenotypic and molecular signatures. Age- and sex-matched P301S and wild-type mice were reared in normoxia (21% O2) as experimental controls. RESULTS: CIH significantly enhanced pathological human tau seeding and spread across connected brain circuitry in P301S mice; it also increased phosphorylated tau load. CIH also exacerbated memory and synaptic plasticity deficits in P301S mice. However, CIH had no effect on seizure susceptibility and network hyperexcitability in these mice. Finally, CIH exacerbated AD-related pathogenic molecular signaling in P301S mice. CONCLUSIONS: CIH-induced increase in pathologic human tau seeding and spread and exacerbation of other AD-related impairments provide new insights into the role of CIH and obstructive sleep apnea in AD pathogenesis.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Modelos Animais de Doenças , Hipóxia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal
16.
Biol Psychiatry ; 91(1): 81-91, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33896623

RESUMO

BACKGROUND: Major depressive disorder is a pervasive and debilitating syndrome characterized by mood disturbances, anhedonia, and alterations in cognition. While the prevalence of major depressive disorder is twice as high for women as men, little is known about the molecular mechanisms that drive sex differences in depression susceptibility. METHODS: We discovered that SLIT1, a secreted protein essential for axonal navigation and molecular guidance during development, is downregulated in the adult ventromedial prefrontal cortex (vmPFC) of women with depression compared with healthy control subjects, but not in men with depression. This sex-specific downregulation of Slit1 was also observed in the vmPFC of mice exposed to chronic variable stress. To identify a causal, sex-specific role for SLIT1 in depression-related behavioral abnormalities, we performed knockdown (KD) of Slit1 expression in the vmPFC of male and female mice. RESULTS: When combined with stress exposure, vmPFC Slit1 KD reflected the human condition by inducing a sex-specific increase in anxiety- and depression-related behaviors. Furthermore, we found that vmPFC Slit1 KD decreased the dendritic arborization of vmPFC pyramidal neurons and decreased the excitability of the neurons in female mice, effects not observed in males. RNA sequencing analysis of the vmPFC after Slit1 KD in female mice revealed an augmented transcriptional stress signature. CONCLUSIONS: Together, our findings establish a crucial role for SLIT1 in regulating neurophysiological and transcriptional responses to stress within the female vmPFC and provide mechanistic insight into novel signaling pathways and molecular factors influencing sex differences in depression susceptibility.


Assuntos
Transtorno Depressivo Maior , Anedonia , Animais , Ansiedade , Feminino , Masculino , Camundongos , Córtex Pré-Frontal , Caracteres Sexuais
17.
Biol Psychiatry ; 91(1): 36-42, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602500

RESUMO

Both history of early-life stress (ELS) and female sex are associated with increased risk for depression. The complexity of how ELS interacts with brain development and sex to impart risk for multifaceted neuropsychiatric disorders is also unlikely to be understood by examining changes in single genes. Here, we review an emerging literature on genome-wide transcriptional and epigenetic signatures of ELS and the potential moderating influence of sex. We discuss evidence both that there are latent sex differences revealed by ELS and that ELS itself produces latent transcriptomic changes revealed by adult stress. In instances where there are broad similarities in global signatures of ELS among females and males, genes that contribute to these patterns are largely distinct based on sex. As this area of investigation grows, an effort should be made to better understand the sex-specific impact of ELS within the human brain, specific contributions of chromosomal versus hormonal sex, how ELS alters the time course of normal transcriptional development, and the cell-type specificity of transcriptomic and epigenomic changes in the brain. A better understanding of how ELS interacts with sex to alter transcriptomic and epigenomic signatures in the brain will inform individualized therapeutic strategies to prevent or ameliorate depression and other psychiatric disorders in this vulnerable population.


Assuntos
Experiências Adversas da Infância , Encéfalo , Epigenômica , Feminino , Humanos , Masculino , Caracteres Sexuais , Estresse Psicológico/genética
18.
Front Psychiatry ; 12: 744690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744836

RESUMO

Early life stress - including experience of child maltreatment, neglect, separation from or loss of a parent, and other forms of adversity - increases lifetime risk of mood, anxiety, and substance use disorders. A major component of this risk may be early life stress-induced alterations in motivation and reward processing, mediated by changes in the nucleus accumbens (NAc) and ventral tegmental area (VTA). Here, we review evidence of the impact of early life stress on reward circuit structure and function from human and animal models, with a focus on the NAc. We then connect these results to emerging theoretical models about the indirect and direct impacts of early life stress on reward circuit development. Through this review and synthesis, we aim to highlight open research questions and suggest avenues of future study in service of basic science, as well as applied insights. Understanding how early life stress alters reward circuit development, function, and motivated behaviors is a critical first step toward developing the ability to predict, prevent, and treat stress-related psychopathology spanning mood, anxiety, and substance use disorders.

19.
J Neurosci ; 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099514

RESUMO

Paternal stress can induce long-lasting changes in germ cells potentially propagating heritable changes across generations. To date, no studies have investigated differences in transmission patterns between stress-resilient and -susceptible mice. We tested the hypothesis that transcriptional alterations in sperm during chronic social defeat stress (CSDS) transmit increased susceptibility to stress phenotypes to the next generation. We demonstrate differences in offspring from stressed fathers that depend upon paternal category (resilient vs susceptible) and offspring sex. Importantly, artificial insemination reveals that sperm mediates some of the behavioral phenotypes seen in offspring. Using RNA-sequencing we report substantial and distinct changes in the transcriptomic profiles of sperm following CSDS in susceptible vs resilient fathers, with alterations in long noncoding RNAs (lncRNAs) predominating especially in susceptibility. Correlation analysis revealed that these alterations were accompanied by a loss of regulation of protein-coding genes by lncRNAs in sperm of susceptible males. We also identify several co-expression gene modules that are enriched in differentially expressed genes in sperm from either resilient or susceptible fathers. Taken together, these studies advance our understanding of intergenerational epigenetic transmission of behavioral experience.SIGNIFICANCE STATEMENTThis manuscript contributes to the complex factors that influence the paternal transmission of stress phenotypes. By leveraging the segregation of males exposed to chronic social defeat stress into either resilient or susceptible categories we were able to identify the phenotypic differences in the paternal transmission of stress phenotypes across generations between the two lineages. Importantly, this work also alludes to the significance of both long noncoding RNAs and protein coding genes mediating the paternal transmission of stress. The knowledge gained from these data is of particular interest in understanding the risk for the development of psychiatric disorders such as anxiety and depression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...