Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L71-L82, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988602

RESUMO

Obesity is a risk factor for asthma. Individuals with asthma and obesity often have poor asthma control and do not respond as well to therapies such as inhaled corticosteroids and long-acting bronchodilators. Weight loss improves asthma control, with a 5%-10% loss in body mass necessary and sufficient to lead to clinically relevant improvements. Preclinical studies have demonstrated the pathogenic contribution of adipocytes from obese mice to the augmented production of proinflammatory cytokines from airway epithelial cells and the salutary effects of diet-induced weight loss to decrease these consequences. However, the effects of adipocyte-derived products on airway epithelial function in human obesity remain incompletely understood. We utilized samples collected from a 12-mo longitudinal study of subjects with obesity undergoing weight loss (bariatric) surgery including controls without asthma and subjects with allergic and nonallergic obese asthma. Visceral adipose tissue (VAT) samples were collected during bariatric surgery and from recruited normal weight controls without asthma undergoing elective abdominal surgery. Human bronchial epithelial (HBEC3-KT) cells were exposed to plasma or conditioned media from cultured VAT adipocytes with or without agonists. Human bronchial smooth muscle (HBSM) cells were similarly exposed to adipocyte-conditioned media. Proinflammatory cytokines were augmented in supernatants from HBEC3-KT cells exposed to plasma as compared with subsequent visits. Whereas exposure to obese adipocyte-conditioned media induced proinflammatory responses, there were no differences between groups in both HBEC3-KT and HBSM cells. These data show that bariatric surgery and subsequent weight loss beneficially change the circulating factors that augment human airway epithelial and bronchial smooth muscle cell proinflammatory responses.NEW & NOTEWORTHY This longitudinal study following subjects with asthma and obesity reveals that weight loss following bariatric surgery decreases the capacity for plasma to augment proinflammatory cytokine secretion by human bronchial epithelial cells, implicating that circulating but not adipocyte-derived factors are important modulators in obese asthma.


Assuntos
Asma , Cirurgia Bariátrica , Animais , Camundongos , Humanos , Estudos Longitudinais , Meios de Cultivo Condicionados , Obesidade/cirurgia , Obesidade/complicações , Cirurgia Bariátrica/efeitos adversos , Brônquios/patologia , Citocinas , Células Epiteliais/patologia , Redução de Peso/fisiologia
2.
Am J Reprod Immunol ; 90(4): e13772, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37766406

RESUMO

PROBLEM: The occurrence of preterm birth is associated with multiple factors including bleeding, infection and inflammation. Platelets are mediators of hemostasis and can modulate inflammation through interactions with leukocytes. TREM like Transcript 1 (TLT-1) is a type 1 single Ig domain receptor on activated platelets. In adults, it plays a protective role by dampening the inflammatory response and facilitating platelet aggregation at sites of vascular injury. TLT-1 is expressed in human placenta and found in cord blood. We thus hypothesized that TLT-1 deficiency is associated with prematurity and fetal inflammation. METHOD OF STUDY: To test this hypothesis, we examined cord blood levels of soluble TLT-1 (sTLT) in premature and term infants and compared the inflammatory response in C57BL/6 (WT) and TLT-1-/- (treml1-/- , KO) mice given intraperitoneal LPS mid-gestation RESULTS: The preterm infant cord blood level of sTLT was significantly lower than that found at term. On exposure to LPS, histology of KO (as compared to WT) placenta and decidua showed increased hemorrhage, and KO decidual RNA expression of IL-10 was significantly lower. KO fetal interface tissues (placenta, membranes, amniotic fluid) over time showed increased expression of inflammatory cytokines such as IL-6, IFN-γ, and TNF, but not MCP-1. However, fetal organs showed similar levels. CONCLUSION: There is a potential association between insufficient TLT-1 expression and increased fetal inflammatory responses in the setting of prematurity. The data support further study of TLT-1 in the mechanistic link between bleeding, inflammation and preterm birth, and perhaps as a biomarker in human pregnancy.


Assuntos
Recém-Nascido Prematuro , Nascimento Prematuro , Animais , Feminino , Humanos , Lactente , Recém-Nascido , Camundongos , Gravidez , Líquido Amniótico , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL
3.
J Allergy Clin Immunol Glob ; 1(4): 282-298, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36466740

RESUMO

Background: Individuals with allergic asthma exhibit lung inflammation and remodeling accompanied by methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility, and they can present with a range of mild-to-severe disease amenable or resistant to therapeutic intervention, respectively. There remains a need for alternatives or complements to existing treatments that could control the physiologic manifestations of allergic asthma. Objectives: Our aim was to examine the hypothesis that because ketone bodies elicit anti-inflammatory activity and are effective in mitigating the methacholine hyperresponsiveness associated with obese asthma, increasing systemic concentrations of ketone bodies would diminish pathologic outcomes in asthma-relevant cell types and in mouse models of allergic asthma. Methods: We explored the effects of ketone bodies on allergic asthma-relevant cell types (macrophages, airway epithelial cells, CD4 T cells, and bronchial smooth muscle cells) in vitro as well as in vivo by using preclinical models representative of several endotypes of allergic asthma to determine whether promotion of ketosis through feeding a ketogenic diet or providing a ketone precursor or a ketone ester dietary supplement could affect immune and inflammatory parameters as well as methacholine hyperresponsiveness. Results: In a dose-dependent manner, the ketone bodies acetoacetate and ß-hydroxybutyrate (BHB) decreased proinflammatory cytokine secretion from mouse macrophages and airway epithelial cells, decreased house dust mite (HDM) extract-induced IL-8 secretion from human airway epithelial cells, and decreased cytokine production from polyclonally and HDM-activated T cells. Feeding a ketogenic diet, providing a ketone body precursor, or supplementing the diet with a ketone ester increased serum BHB concentrations and decreased methacholine hyperresponsiveness in several acute HDM sensitization and challenge models of allergic asthma. A ketogenic diet or ketone ester supplementation decreased methacholine hyperresponsiveness in an HDM rechallenge model of chronic allergic asthma. Ketone ester supplementation synergized with corticosteroid treatment to decrease methacholine hyperresponsiveness in an HDM-driven model of mixed-granulocytic severe asthma. HDM-induced morphologic changes in bronchial smooth muscle cells were inhibited in a dose-dependent manner by BHB, as was HDM protease activity. Conclusions: Increasing systemic BHB concentrations through dietary interventions could provide symptom relief for several endotypes of allergic asthmatic individuals through effects on multiple asthma-relevant cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...