Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175534, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153629

RESUMO

Soil stoichiometry of carbon (C), nitrogen (N), and phosphorus (P) are indicators for nutrient balance. Shrub encroachment into grasslands could change nutrient concentrations and stoichiometry in soils, but the general patterns remain unclear. With a meta-analysis of a global dataset covering 344 observations from 68 studies, we examined the responses of grassland soil C:N:P stoichiometry to shrub encroachment under various environmental conditions. Our results show that: 1) Shrub encroachment significantly increased the concentrations of soil C (+29 %), N (+25 %), P (+20 %), C:N (+5 %), C:P (+12 %), and N:P (+6 %). The magnitude of such effects varied with climate, soil texture, and soil layer. 2) Increases in SOC and TN concentrations mainly occurred in Mediterranean and very humid climate zones. Soil C:P and N:P decreased in semi-humid climate zone after shrub encroachment. 3) The increases in SOC and TN concentrations and in the C:N, C:P, and N:P ratios after shrub encroachment were greater in the topsoil than in deeper soil layers. 4) Both finest-textured soil (clay) and coarsest-textured soil (sand) are beneficial for increase of soil nutrient concentrations following shrub encroachment. 5) The magnitude of the change in soil C:N was negatively correlated with the duration of shrub encroachment, due to greater increases in soil TN than in SOC concentrations with longer durations of encroachment. Our results indicate that soil stoichiometric shifts in shrub-encroached grasslands are relatively sensitive to environmental factors, including soil texture, soil pH, and climate. These findings help us to better understand the effects of shrub encroachment on biogeochemical cycling, functioning, and services in grasslands across a broad range of spatio-temporal scales.

2.
Sci Total Environ ; : 175586, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154998

RESUMO

Mangrove wetlands are highly productive ecosystems in tropical and subtropical coastal zones, play crucial roles in water purification, biodiversity maintenance, and carbon sequestration. Recent years have seen the implementation of pond return initiatives, which have facilitated the gradual recovery of mangrove areas in China. However, the implications of these initiatives for soil aggregate stability, microbial community structure, and network interactions remain unclear. This study assesses the impacts of converting ponds to mangroves-both in natural and artificially restored settings-on soil aggregate stability and microbial networks at typical mangrove restoration sites along China's southeastern coast. Our observations confirmed our hypothesis that pond-to-mangrove conversions resulted in an increase in the proportion of large aggregates (>0.25 mm), improved soil aggregate structural stability, and increased carbon sequestration. However, mangrove recovery led to a decrease in the abundance and diversity of soil fungi communities. In terms of co-occurrence networks, naturally restored mangrove wetlands exhibited more nodes and edges. The naturally recovered mangrove wetlands demonstrated a higher level of community symbiosis compared to those that were manually restored. Conversely, bacterial networks showed a different pattern, with significant shifts in key taxa related to carbon sequestration functions. For instance, the proportion of bacterial Desulfobacterota and fungi Basidiomycota in natural recovery mangrove increased by 15.03 % and 7.82 %, respectively, compared with that in aquaculture ponds. Soil fungi and bacteria communities, as well as carbon sequestration by aggregates, were all positively correlated with soil total carbon content (P < 0.05). Both bacterial and fungal communities contributed to soil aggregate stability. Our study highlights the complex relationships between soil microbial communities, aggregate stability, and the carbon cycle before and after land-use changes. These findings underscore the potential benefits of restoring mangrove wetlands, as such efforts can enhance carbon storage capacity and significantly contribute to climate change mitigation.

3.
Nat Food ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143310

RESUMO

The rising carbon dioxide concentrations are expected to increase future rice yields. However, variations in the CO2 fertilization effect (CFE) between rice subspecies and the influence of concurrent global warming introduce uncertainty in future global rice yield projections. Here we conducted a meta-analysis of rising carbon dioxide field experiments and employed crop modelling to assess future global rice yields for the top 14 rice producing countries. We found a robust parabolic relationship between rice CFE and temperature, with significant variations between rice subspecies. Our projections indicate that global rice production in the 2050s is expected to increase by 50.32 million tonnes (7.6%) due to CFE compared with historical production. Because low-income countries will experience higher temperatures, the gaps (difference of Δyield) between middle-to-high-income and low-income countries are projected to widen from the 2030s to the 2090s under elevated carbon dioxide. These findings underscore the critical role of CFE and emphasize the necessity to increase investments in research and technology for rice producing systems in low-income countries.

4.
Sci Total Environ ; 950: 175425, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134261

RESUMO

Plant non-structural carbohydrates (NSCs), which largely comprise starch and soluble sugars, are essential energy reserves to support plant growth and physiological functions. While it is known that increasing global deposition of nitrogen (N) affects plant concentration of NSCs, quantification of seasonal responses and drivers of woody species leaf and root NSCs to N addition at larger spatial scales remains lacking. Here, we systematically analyzed data from 53 field experiments distributed across China, comprising 1202 observations, to test for effects of N addition on woody plant leaf and root NSCs across and within growing and non-growing seasons. We found (1) no overall effects of N addition on the concentrations of leaf and root NSCs, soluble sugars or starch during the growing season or the non-growing season for leaves. However, N addition decreased root NSC and starch concentrations by 13.8 % and 39.0 %, respectively, and increased soluble sugars concentration by 15.0 % during the non-growing season. (2) Shifts in leaf NSC concentration under N addition were driven by responses by soluble sugars in both seasons, while shifts in root NSC were driven by soluble sugars in the non-growing season and starch and soluble sugars in the growing season. (3) Relationships between N, carbon, and phosphorus stoichiometry with leaf and root NSCs indicated effects of N addition on woody plant NSCs allocation through impacts on plant photosynthesis, respiration, and growth. (4) Effects of N addition on leaf and root NSCs varied with plant functional types, where effects were more pronounced in roots than in leaves during the non-growing season. Overall, our results reveal divergent responses of woody plant leaf and root NSCs to N addition within non-growing season and highlight the role of ecological stoichiometry and plant functional types in woody plant allocation patterns of NSCs in response to ongoing N deposition under global change.

5.
Front Plant Sci ; 15: 1410372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100082

RESUMO

Understanding the invasion of moso bamboo (Phyllostachys edulis) into adjacent evergreen broadleaf forest based on functional traits is crucial due to its significant influence on ecosystem processes. However, existing research has primarily focused on above- or below-ground traits in isolation, lacking a comprehensive integration of both. In this study, we conducted a trait-based analysis including 23 leaf traits and 11 root traits in three forest types - bamboo forest, mixed bamboo and broadleaf forest, and evergreen broadleaf forest - to investigate trait differences, phenotypic integration, and above- and below-ground resource strategies in bamboo and broadleaf species. Our findings demonstrated significant differences in leaf and root key traits between bamboo and broadleaf species, strongly supporting the "phenotypic divergence hypothesis". Bamboo exhibited stronger trait correlations compared to broadleaf species, indicating higher phenotypic integration. Above- and below-ground strategies were characterized by trade-offs rather than coordination, resulting in a multi-dimensional trait syndrome. Specifically, a unidimensional leaf economics spectrum revealed that bamboo with higher leaf N concentrations (LNC), P concentrations (LPC), and specific leaf area (SLA) adopted a "fast acquisitive" above-ground strategy, while broadleaf species with thicker leaves employed a "slow conservative" above-ground strategy. A two-dimensional root trait syndrome indicated a "conservation" gradient with bamboo adopting a "slow conservative" below-ground strategy associated with higher root tissue density (RTD), and broadleaf species exhibiting a "fast acquisitive" below-ground strategy linked to higher root N concentrations (RNC) and P concentrations (RPC), and a "collaboration" gradient probably ranging from broadleaf species with a "do-it-yourself" strategy characterized by high specific root length (SRL), to bamboo adopting an "outsourcing" strategy with thicker roots. In conclusion, key trait divergence from coexisting broadleaf species, higher phenotypic integration, and multi-dimensional opposite above- and below-ground resource strategies confer competitive advantages to moso bamboo, shedding light on the mechanistic understanding of its invasion into subtropical evergreen broadleaf forest and providing theoretical guidance for maintaining the stability of subtropical forest ecosystem.

6.
Sci China Life Sci ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38951429

RESUMO

Our knowledge on permafrost carbon (C) cycle is crucial for understanding its feedback to climate warming and developing nature-based solutions for mitigating climate change. To understand the characteristics of permafrost C cycle on the Tibetan Plateau, the largest alpine permafrost region around the world, we summarized recent advances including the stocks and fluxes of permafrost C and their responses to thawing, and depicted permafrost C dynamics within this century. We find that this alpine permafrost region stores approximately 14.1 Pg (1 Pg=1015 g) of soil organic C (SOC) in the top 3 m. Both substantial gaseous emissions and lateral C transport occur across this permafrost region. Moreover, the mobilization of frozen C is expedited by permafrost thaw, especially by the formation of thermokarst landscapes, which could release significant amounts of C into the atmosphere and surrounding water bodies. This alpine permafrost region nevertheless remains an important C sink, and its capacity to sequester C will continue to increase by 2100. For future perspectives, we would suggest developing long-term in situ observation networks of C stocks and fluxes with improved temporal and spatial coverage, and exploring the mechanisms underlying the response of ecosystem C cycle to permafrost thaw. In addition, it is essential to improve the projection of permafrost C dynamics through in-depth model-data fusion on the Tibetan Plateau.

7.
Glob Chang Biol ; 30(7): e17406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982862

RESUMO

Temperature extremes exert a significant influence on terrestrial ecosystems, but the precise levels at which these extremes trigger adverse shifts in vegetation productivity have remained elusive. In this study, we have derived two critical thresholds, using standard deviations (SDs) of growing-season temperature and satellite-based vegetation productivity as key indicators. Our findings reveal that, on average, vegetation productivity experiences rapid suppression when confronted with temperature anomalies exceeding 1.45 SD above the mean temperature during 2001-2018. Furthermore, at temperatures exceeding 2.98 SD above the mean, we observe the maximum level of suppression, particularly in response to the most extreme high-temperature events. When Earth System Models are driven by a future medium emission scenario, they project that mean temperatures will routinely surpass both of these critical thresholds by approximately the years 2050 and 2070, respectively. However, it is important to note that the timing of these threshold crossings exhibits spatial variation and will appear much earlier in tropical regions. Our finding highlights that restricting global warming to just 1.5°C can increase safe areas for vegetation growth by 13% compared to allowing warming to reach 2°C above preindustrial levels. This mitigation strategy helps avoid exposure to detrimental extreme temperatures that breach these thresholds. Our study underscores the pivotal role of climate mitigation policies in fostering the sustainable development of terrestrial ecosystems in a warming world.


Assuntos
Aquecimento Global , Ecossistema , Desenvolvimento Vegetal , Temperatura , Estações do Ano , Temperatura Alta , Modelos Climáticos , Plantas , Mudança Climática
8.
Adv Sci (Weinh) ; : e2308176, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024521

RESUMO

Microbial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant-derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant-derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource-specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.

9.
Glob Chang Biol ; 30(7): e17415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005227

RESUMO

Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.


Assuntos
Microplásticos , Microbiologia do Solo , Microplásticos/análise , Solo/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Poluentes do Solo/análise , Microbiota/efeitos dos fármacos , Biomassa , Carbono/análise , Carbono/metabolismo
10.
Sci Total Environ ; 948: 174820, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032742

RESUMO

The environmental risks of migration of heavy metals (HMs) following applications of sewage sludge (SS) to forest soils are garnering increased attention. Plant litter at the forest floor may modify HM migration pathways through impacts on soil aggregates and water/soil erosion; however, HM migration responses to plant litter are poorly understood. The aim of this study was to determine the effects of plant litter cover on HMs migration, and water and soil erosion following the application of SS to subtropical forest soils. Effects of addition of SS along and SS plus plant litter at 0.75 or 1.5 kg m-2 on the migration of cadmium, chromium, copper, nickel, lead, and zinc in surface runoff, soil interflow, and sediments were quantified across nine simulated rainfall events in a laboratory experiment and following natural intense rain events in a field experiment. Addition of SS elevated HM concentrations in surface runoff by 38.7 to 98.5 %, in soil interflow by 48.3 to 312.5 %, and in sediment by 28.5 to 149.4 %, and increased the production of sediment aggregates <0.05 mm that led to greater cumulative migrations of HMs in surface runoff and sediment; sediment accounted for 89.5 % of HM migrations. Addition of plant litter reduced cumulative migration of HMs by 87.1-97.27 %; however, the higher rate of plant litter led to a decrease in surface runoff and sediment yield, and an increase in soil interflow. Addition of plant litter shifted the main pathway of HM migration from sediment to surface runoff and soil interflow. The potential ecological HM risk index was "low" for each treatment. We found consistency in HM concentrations and migrations via surface runoff between the field and laboratory experiments. Overall, the addition of plant litter with SS mitigated soil erosion and reduced total migration of HMs, resulting in a 88.7-97.3 % decrease in the ecological risk index of the six HMs. We conclude that the addition of plant litter may provide a management strategy for the mitigation of HM risks to environmental safety for the disposal of SS in subtropical forest systems.


Assuntos
Florestas , Metais Pesados , Esgotos , Poluentes do Solo , Solo , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Monitoramento Ambiental , Erosão do Solo
11.
Sci Total Environ ; 946: 174448, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38969120

RESUMO

Afforestation is a crucial pathway for ecological restoration and has the potential to modify soil microbial community, thereby impacting the cycling and accumulation of carbon in soil across diverse patterns. However, the overall patterns of how afforestation impacts below-ground carbon cycling processes remain uncertain. In this comprehensive meta-analysis, we systematically evaluated 7045 observations from 210 studies worldwide to evaluate the influence of afforestation on microbial communities, enzyme activities, microbial functions, and associated physicochemical properties of soils. Afforestation increases microbial biomass, carbon and nitrogen hydrolase activities, and microbial respiration, but not carbon oxidase activity and nitrogen decomposition rate. Conversely, afforestation leads to a reduction in the metabolic quotient, with significant alteration of bacterial and fungal community structures and positive effects on the fungi: bacteria ratio rather than alpha and beta diversity metrics. We found a total 77 % increase in soil organic carbon (SOC) content after afforestation, which varied depending on initial SOC content before afforestation, afforestation stand age, and aridity index of afforestation sites. The modified SOC is associated with bacterial community composition along with intracellular metabolic quotient and extracellular carbon degrading enzyme activity playing a role. These findings provide insights into the pathways through which afforestation affects carbon cycling via microorganisms, thus improving our knowledge of soil carbon reservoir's responses to afforestation under global climate change.


Assuntos
Carbono , Florestas , Microbiologia do Solo , Solo , Carbono/análise , Ciclo do Carbono , Mudança Climática , Recuperação e Remediação Ambiental/métodos , Microbiota , Solo/química
12.
Glob Chang Biol ; 30(7): e17430, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031432

RESUMO

The relationship between plant aboveground biomass and diversity typically follows a unimodal pattern, showing a positive correlation in resource-poor habitats and a negative correlation in resource-rich environments. Precipitation is a crucial resource for both plant biomass and diversity in terrestrial ecosystems. However, the impact of precipitation changes on the relationship between plant biomass and diversity remains unclear. We conduct a water addition field experiment in a semiarid grassland and identify a unimodal relationship between plant biomass and species richness under ambient conditions. Water addition delays the declining phase of this unimodal curve and shift it upward compared to ambient conditions. Our meta-analysis of water addition experiments conducted across major biomes worldwide (grassland, shrubland, desert, and forest) supports this finding, while water reduction does not alter the biomass-diversity relationship. Water addition increases biomass in all climate but only increases species richness in arid and semiarid climate. Similarly, water reduction decreases biomass in all climate but only reduces species richness in arid and semiarid climate. Species richness in dry subhumid and humid climate does not change significantly. Furthermore, our field experiment shows that water addition increases plant diversity while decreasing soil inorganic nitrogen levels. The increase in one resource, such as water, leads to the scarcity of another, such as nutrient, thus postponing the declining phase of the plant biomass-diversity relationship typically observed in resource-rich habitats. Our research contributes to predicting the plant biomass-diversity relationship under changing precipitation conditions and highlights the complex interplay between water availability, nutrient level, and plant diversity.


Assuntos
Biodiversidade , Biomassa , Água , Ecossistema , Pradaria , Nitrogênio/análise , Nitrogênio/metabolismo , Plantas , Chuva , Solo/química
13.
Glob Chang Biol ; 30(7): e17429, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039847

RESUMO

Vegetation autumn phenology is critical in regulating the ecosystem carbon cycle and regional climate. However, the dominant drivers of autumn senescence and their temporal shifts under climate change remain poorly understood. Here, we conducted a multi-factor analysis considering both direct climatic controls and biological carryover effects from start-of-season (SOS) and seasonal peak vegetation activities on the end-of-season (EOS) to fill these knowledge gaps. Combining satellite and ground observations across the northern hemisphere, we found that carryover effects from early-to-peak vegetation activities exerted greater influence on EOS than the direct climatic controls on nearly half of the vegetated land. Unexpectedly, the carryover effects from SOS on EOS have significantly weakened over recent decades, accompanied by strengthened climatic controls. Such results indicate the weakened constraint of leaf longevity on senescence due to prolonged growing season in response to climate change. These findings underscore the important role of biological carryover effects in regulating vegetation autumn senescence under climate change, which should be incorporated into the formulation and enhancement of phenology modules utilized in land surface models.


Assuntos
Mudança Climática , Folhas de Planta , Estações do Ano , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Senescência Vegetal , Ecossistema
14.
Sci Total Environ ; 949: 175129, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084388

RESUMO

Soil salinization adversely affects soil fertility and plant growth in arid region worldwide. However, as the drivers of nutrient cycling, the response of microbial communities to soil salinization is poorly understood. This study characterized bacterial communities in different soil layers along a natural salinity gradient in the Karayulgun River Basin, located northwest of the Taklimakan desert in China, using the 16S rRNA Miseq-sequencing technique. The results revealed a significant filtering effect of salinity on the bacterial community in the topsoil. Only the α-diversity (Shannon index) in the topsoil (0-10 cm) significantly decreased with increasing salinity levels, and community dissimilarity in the topsoil was enhanced with increasing salinity, while there was no significant relationship in the subsoil. BugBase predictions revealed that aerobic, facultatively anaerobic, gram-positive, and stress-tolerant bacterial phenotypes in the topsoil was negatively related to salinity. The average degree and number of modules of the bacterial co-occurrence network in the topsoil were lower under higher salinity levels, which contrasted with the trends in the subsoil, suggesting an unstable bacterial network in the topsoil caused by higher salinity. The average path length among bacterial species increased in both soil layers under high salinity conditions. Plant diversity and available nitrogen were the main drivers affecting community composition in the topsoil, while available potassium largely shaped community composition in the subsoil. This study provides solid evidence that bacterial communities adapt to salinity through the adjustment of microbial composition based on soil depth. This information will contribute to the sustainable management of drylands and improved predictions and responses to changes in ecosystems caused by climate change.


Assuntos
Bactérias , Clima Desértico , Microbiota , Salinidade , Microbiologia do Solo , Solo , China , Solo/química , Bactérias/classificação , RNA Ribossômico 16S , Monitoramento Ambiental
15.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39073904

RESUMO

Antibiotic resistance in plant-associated microbiomes poses significant risks for agricultural ecosystems and human health. Although accumulating evidence suggests a role for plant genotypes in shaping their microbiome, almost nothing is known about how the changes of plant genetic information affect the co-evolved plant microbiome carrying antibiotic resistance genes (ARGs). Here, we selected 16 wheat cultivars and experimentally explored the impact of host genetic variation on phyllosphere microbiome, ARGs, and metabolites. Our results demonstrated that host genetic variation significantly influenced the phyllosphere resistomes. Wheat genotypes exhibiting high phyllosphere ARGs were linked to elevated Pseudomonas populations, along with increased abundances of Pseudomonas aeruginosa biofilm formation genes. Further analysis of 350 Pseudomonas spp. genomes from diverse habitats at a global scale revealed that nearly all strains possess multiple ARGs, virulence factor genes (VFGs), and mobile genetic elements (MGEs) on their genomes, albeit with lower nucleotide diversity compared to other species. These findings suggested that the proliferation of Pseudomonas spp. in the phyllosphere significantly contributed to antibiotic resistance. We further observed direct links between the upregulated leaf metabolite DIMBOA-Glc, Pseudomonas spp., and enrichment of phyllosphere ARGs, which were corroborated by microcosm experiments demonstrating that DIMBOA-Glc significantly enhanced the relative abundance of Pseudomonas spp. Overall, alterations in leaf metabolites resulting from genetic variation throughout plant evolution may drive the development of highly specialized microbial communities capable of enriching phyllosphere ARGs. This study enhances our understanding of how plants actively shape microbial communities and clarifies the impact of host genetic variation on the plant resistomes.


Assuntos
Variação Genética , Microbiota , Folhas de Planta , Pseudomonas , Triticum , Triticum/microbiologia , Folhas de Planta/microbiologia , Pseudomonas/genética , Pseudomonas/metabolismo , Fatores de Virulência/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Genótipo , Resistência Microbiana a Medicamentos/genética , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/genética
16.
AMB Express ; 14(1): 85, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39078439

RESUMO

Identifying genomic markers for phosphate-solubilizing bacteria (PSB) is vital for advancing agricultural sustainability. This study utilizes whole-genome sequencing and comprehensive bioinformatics analysis, examining the genomes of 76 PSB strains with the aid of specialized genomic databases and analytical tools. We have identified the pqq gene cluster, particularly the pqqC gene, as a key marker for (P) solubilization capabilities. The pqqC gene encodes an enzyme that catalyzes the conversion of precursors to 2-keto-D-gluconic acid, which significantly enhances P solubilization in soil. This gene's importance lies not only in its biochemical function but also in its prevalence and effectiveness across various PSB strains, distinguishing it from other potential markers. Our study focuses on Burkholderia cepacia 51-Y1415, known for its potent solubilization activity, and demonstrates a direct correlation between the abundance of the pqqC gene, the quantitative release of P, and the production of 2-keto-D-gluconic acid over a standard 144-h cultivation period under standardized conditions. This research not only underscores the role of the pqqC gene as a universal marker for the rapid screening and functional annotation of PSB strains but also highlights its implications for enhancing soil fertility and crop yields, thereby contributing to more sustainable agricultural practices. Our findings provide a foundation for future research aimed at developing targeted strategies to optimize phosphate solubilization, suggesting areas for further investigation such as the integration of these genomic insights into practical agricultural applications to maximize the effectiveness of PSB strains in real-world soil environments.

17.
Ecol Lett ; 27(8): e14489, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39075934

RESUMO

Rarely do we observe competitive exclusion within plant communities, even though plants compete for a limited pool of resources. Thus, our understanding of the mechanisms sustaining plant biodiversity might be limited. In this study, we explore two common ecological strategies, species sorting and character displacement, that promote coexistence by reducing competition. We assess the degree to which woody plants may implement these two strategies to lower belowground competition for nutrients which occurs via nutritional (mostly mycorrhizal) mutualisms. First, we compile data on plant traits and the mycorrhizal association state of woody angiosperms using a global inventory of indigenous flora. Our analysis reveals that species in locations with high mycorrhizal diversity exhibit distinct mean values in leaf area and wood density based on their mycorrhizal type, indicating species sorting. Second, we reanalyse a large dataset on leaf area to demonstrate that in areas with high mycorrhizal diversity, trees maintain divergent leaf area values, showcasing character displacement. Character displacement among plants is considered rare, making our observation significant. In summary, our study uncovers a rare occurrence of character displacement and identifies a common mechanism employed by plants to alleviate competition, shedding light on the complexities of plant coexistence in diverse ecosystems.


Assuntos
Biodiversidade , Micorrizas , Micorrizas/fisiologia , Magnoliopsida/fisiologia , Magnoliopsida/microbiologia , Simbiose , Folhas de Planta/fisiologia , Ecossistema , Árvores/fisiologia , Árvores/microbiologia , Madeira
18.
Sci Total Environ ; 947: 174672, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39002582

RESUMO

Tropical forests are sensitive to nitrogen (N) and phosphorus (P) availability, and under nutrient application the variation of soil organic carbon (SOC) preserving mechanism remains to be explored. To reveal the forest-specific SOC preservation via biochemical selection in response to nutrient application, we investigated a monoculture (Acacia plantation) and a multispecies forest both with chronic fertilization in subtropical regions, and measured specific fingerprints of plant- and microbial-derived C compounds. In addition, to quantify the effect of P application on SOC content among tropical forests, we conducted a meta-analysis by compiling 125 paired measurements in field experiments from 62 studies. In our field experiment, microbial community composition and activity mediated forest-specific responses of SOC compounds to P addition. The shift of community composition from fungi towards Gram-positive bacteria in the Acacia plantation by P addition led to the consumption of microbial residual C (MRC) as C source; in comparison, P addition increased plant species with less complex lignin substrates and induced microbial acquisition for N sources, thus stimulated the decomposition of both plant- and microbial-derived C. Same with our field experiment, bulk SOC content had neutral response to P addition among tropical forests in the meta-analysis, although divergences could happen among experimental durations and secondary tree species. Close associations among SOC compounds with biotic origins and mineral associated organic C (MAOC) in the multispecies forest suggested contributions of both plant- and microbial-derive C to SOC stability. Regarding that fungal MRC closely associated with MAOC and consisted of soil N pool which tightly coupled to SOC pool, the reduce of fungal MRC by chronic P addition was detrimental to SOC accumulation and stability in tropical forests.


Assuntos
Carbono , Florestas , Fósforo , Microbiologia do Solo , Solo , Fósforo/análise , Solo/química , Carbono/análise , Fertilizantes/análise , Clima Tropical , Nitrogênio/análise , Árvores , Agricultura/métodos
19.
Sci Total Environ ; 944: 174011, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38880140

RESUMO

The extensive conversion of coastal wetlands into agricultural and aquaculture areas has significant repercussions on soil nutrient balance. However, how coastal conversion specifically influences the dynamics and stoichiometry of topsoil carbon (C), nitrogen (N), and phosphorus (P) remains limited due to the considerable spatial variability and a lack of comprehensive field data. Here, we investigated the concentration and distribution of total C (TC), N (TN) and P (TP), along with their stoichiometric balance in four distinct coastal landscapes, including natural marshes and tidal flats, as well as converted agricultural croplands and ponds. The results revealed that converted croplands and ponds exhibited significantly higher concentrations of soil C, N and P, particularly in comparison to tidal flats. Furthermore, croplands and ponds have higher topsoil C stocks than tidal flats, but little difference or even lose stored C compared to marshes. Cropland soils showed considerably higher levels of available N (NH4+-N and NO3--N) and available P compared to those in natural marshes and tidal flats. The distribution of soil TC, TN, and TP demonstrated greater spatial heterogeneity in natural marshes and tidal flats, while the converted areas were more uniform and became hotspots for N and P accumulation. Coastal conversion altered soil C:N:P stoichiometry, with cropland soils exhibiting a lower N:P ratio (2.9 ± 1.1), indicating that long-term application of N and P fertilizers could decrease the N:P ratio, as P is more retained in the soil than N. Furthermore, it was observed that the dynamics of C, N and P, as well as their stoichiometry, are closely linked to soil physicochemical properties, especially soil organic matter and texture. These findings highlight that coastal conversion and associated management practices markedly affected soil C, N and P dynamics in a representative wetland area of the subtropical regions, leading to a reshaping of their stoichiometric balances, particularly in the topsoil layer.

20.
Imeta ; 3(3): e187, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898982

RESUMO

The role of diverse soil microbiota in restoring erosion-induced degraded lands is well recognized. Yet, the facilitative interactions among symbiotic arbuscular mycorrhizal (AM) fungi, rhizobia, and heterotrophic bacteria, which underpin multiple functions in eroded ecosystems, remain unclear. Here, we utilized quantitative microbiota profiling and ecological network analyses to explore the interplay between the diversity and biotic associations of root-associated microbiota and multifunctionality across an eroded slope of a Robinia pseudoacacia plantation on the Loess Plateau. We found explicit variations in slope multifunctionality across different slope positions, associated with shifts in limiting resources, including soil phosphorus (P) and moisture. To cope with P limitation, AM fungi were recruited by R. pseudoacacia, assuming pivotal roles as keystones and connectors within cross-kingdom networks. Furthermore, AM fungi facilitated the assembly and composition of bacterial and rhizobial communities, collectively driving slope multifunctionality. The symbiotic association among R. pseudoacacia, AM fungi, and rhizobia promoted slope multifunctionality through enhanced decomposition of recalcitrant compounds, improved P mineralization potential, and optimized microbial metabolism. Overall, our findings highlight the crucial role of AM fungal-centered microbiota associated with R. pseudoacacia in functional delivery within eroded landscapes, providing valuable insights for the sustainable restoration of degraded ecosystems in erosion-prone regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA