Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 84: 145-157, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38936762

RESUMO

Biological conversion of lignin from biomass offers a promising strategy for sustainable production of fuels and chemicals. However, aromatic compounds derived from lignin commonly contain methoxy groups, and O-demethylation of these substrates is often a rate-limiting reaction that influences catabolic efficiency. Several enzyme families catalyze aromatic O-demethylation, but they are rarely compared in vivo to determine an optimal biocatalytic strategy. Here, two pathways for aromatic O-demethylation were compared in Pseudomonas putida KT2440. The native Rieske non-heme iron monooxygenase (VanAB) and, separately, a heterologous tetrahydrofolate-dependent demethylase (LigM) were constitutively expressed in P. putida, and the strains were optimized via adaptive laboratory evolution (ALE) with vanillate as a model substrate. All evolved strains displayed improved growth phenotypes, with the evolved strains harboring the native VanAB pathway exhibiting growth rates ∼1.8x faster than those harboring the heterologous LigM pathway. Enzyme kinetics and transcriptomics studies investigated the contribution of selected mutations toward enhanced utilization of vanillate. The VanAB-overexpressing strains contained the most impactful mutations, including those in VanB, the reductase for vanillate O-demethylase, PP_3494, a global regulator of vanillate catabolism, and fghA, involved in formaldehyde detoxification. These three mutations were combined into a single strain, which exhibited approximately 5x faster vanillate consumption than the wild-type strain in the first 8 h of cultivation. Overall, this study illuminates the details of vanillate catabolism in the context of two distinct enzymatic mechanisms, yielding a platform strain for efficient O-demethylation of lignin-related aromatic compounds to value-added products.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Engenharia Metabólica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desmetilação , Evolução Molecular Direcionada
2.
Nat Commun ; 8(1): 2112, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29235478

RESUMO

Sexual recombination and mutation rate are theorized to play different roles in adaptive evolution depending on the fitness landscape; however, direct experimental support is limited. Here we examine how these factors affect the rate of adaptation utilizing a "genderless" strain of Escherichia coli capable of continuous in situ sexual recombination. The results show that the populations with increased mutation rate, and capable of sexual recombination, outperform all the other populations. We further characterize two sexual and two asexual populations with increased mutation rate and observe maintenance of beneficial mutations in the sexual populations through mutational sweeps. Furthermore, we experimentally identify the molecular signature of a mating event within the sexual population that combines two beneficial mutations to generate a fitter progeny; this evidence suggests that the recombination event partially alleviates clonal interference. We present additional data suggesting that stochasticity plays an important role in the combinations of mutations observed.


Assuntos
Adaptação Fisiológica/genética , Conjugação Genética , Escherichia coli/genética , Evolução Molecular , Taxa de Mutação , Algoritmos , Proteínas de Escherichia coli/genética , Aptidão Genética , Modelos Genéticos , Mutação , Seleção Genética
3.
Microbiology (Reading) ; 163(12): 1778-1790, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29125461

RESUMO

Responses to the interspecies quorum-sensing signal autoinducer-2 (AI-2) regulate the patterns of gene expression that promote biofilm development. Escherichia coli also senses AI-2 as a chemoattractant, a response that requires the periplasmic AI-2-binding protein LsrB and the chemoreceptor Tsr. Here, we confirm, as previously observed, that under static conditions highly motile E. coli cells self-aggregate and form surface-adherent structures more readily than cells lacking LsrB and Tsr, or than ΔluxS cells unable to produce AI-2. This difference is observed both at 37 and 30 °C. Cells deleted for the genes encoding the lsrACDBFG operon repressor (ΔlsrR), or the AI-2 kinase (ΔlsrK), or an AI-2 uptake channel protein (ΔlsrC), or an AI-2 metabolism enzyme (ΔlsrG) are also defective in biofilm formation. The Δtsr and ΔlsrB cells are totally defective in AI-2 chemotaxis, whereas the other mutants show normal or near-normal chemotaxis to external gradients of AI-2. These data demonstrate that chemotaxis to external AI-2 is necessary but not sufficient to induce the full range of density-dependent behaviours that are required for optimal biofilm formation. We also demonstrate that, compared to other binding-protein-dependent chemotaxis systems in E. coli, low levels (on the order of ~250 molecules of periplasmic LsrB per wild-type cell and as low as ~50 molecules per cell in some mutants) are adequate for a strong chemotaxis response to external gradients of AI-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA