Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(40): e2212134119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161938

RESUMO

Eukaryotic chromosomes are organized into structural and functional domains with characteristic replication timings, which are thought to contribute to epigenetic programming and genome stability. Differential replication timing results from epigenetic mechanisms that positively and negatively regulate the competition for limiting replication initiation factors. Histone deacetylase Sir2 negatively regulates initiation of the multicopy (∼150) rDNA origins, while Rpd3 histone deacetylase negatively regulates firing of single-copy origins. However, Rpd3's effect on single-copy origins might derive indirectly from a positive function for Rpd3 in rDNA origin firing shifting the competitive balance. Our quantitative experiments support the idea that origins compete for limiting factors; however, our results show that Rpd3's effect on single-copy origin is independent of rDNA copy-number and of Sir2's effects on rDNA origin firing. Whereas RPD3 deletion and SIR2 deletion alter the early S phase dynamics of single-copy and rDNA origin firings in opposite fashion, unexpectedly only RPD3 deletion suppresses overall rDNA origin efficiency across S phase. Increased origin activation in rpd3Δ requires Fkh1/2, suggesting that Rpd3 opposes Fkh1/2-origin stimulation, which involves recruitment of Dbf4-dependent kinase (DDK). Indeed, Fkh1 binding increases at Rpd3-regulated origins in rpd3Δ cells in G1, supporting a mechanism whereby Rpd3 influences initiation timing of single-copy origins directly through modulation of Fkh1-origin binding. Genetic suppression of a DBF4 hypomorphic mutation by RPD3 deletion further supports the conclusion that Rpd3 impedes DDK recruitment by Fkh1, revealing a mechanism of Rpd3 in origin regulation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Histona Desacetilases/metabolismo , Fatores de Iniciação de Peptídeos/genética , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Elife ; 82019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31084713

RESUMO

Chromosomal DNA elements are organized into spatial domains within the eukaryotic nucleus. Sites undergoing DNA replication, high-level transcription, and repair of double-strand breaks coalesce into foci, although the significance and mechanisms giving rise to these dynamic structures are poorly understood. In S. cerevisiae, replication origins occupy characteristic subnuclear localizations that anticipate their initiation timing during S phase. Here, we link localization of replication origins in G1 phase with Fkh1 activity, which is required for their early replication timing. Using a Fkh1-dependent origin relocalization assay, we determine that execution of Dbf4-dependent kinase function, including Cdc45 loading, results in dynamic relocalization of a replication origin from the nuclear periphery to the interior in G1 phase. Origin mobility increases substantially with Fkh1-driven relocalization. These findings provide novel molecular insight into the mechanisms that govern dynamics and spatial organization of DNA replication origins and possibly other functional DNA elements.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Nucleares/metabolismo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Reparo do DNA , Replicação do DNA , Transcrição Gênica
3.
Genome Res ; 26(3): 365-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26728715

RESUMO

The Saccharomyces cerevisiae Forkhead Box (FOX) proteins, Fkh1 and Fkh2, regulate diverse cellular processes including transcription, long-range DNA interactions during homologous recombination, and replication origin timing and long-range origin clustering. We hypothesized that, as stimulators of early origin activation, Fkh1 and Fkh2 abundance limits the rate of origin activation genome-wide. Existing methods, however, are not well-suited to quantitative, genome-wide measurements of origin firing between strains and conditions. To overcome this limitation, we developed qBrdU-seq, a quantitative method for BrdU incorporation analysis of replication dynamics, and applied it to show that overexpression of Fkh1 and Fkh2 advances the initiation timing of many origins throughout the genome resulting in a higher total level of origin initiations in early S phase. The higher initiation rate is accompanied by slower replication fork progression, thereby maintaining a normal length of S phase without causing detectable Rad53 checkpoint kinase activation. The advancement of origin firing time, including that of origins in heterochromatic domains, was established in late G1 phase, indicating that origin timing can be reset subsequently to origin licensing. These results provide novel insights into the mechanisms of origin timing regulation by identifying Fkh1 and Fkh2 as rate-limiting factors for origin firing that determine the ability of replication origins to accrue limiting factors and have the potential to reprogram replication timing late in G1 phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Período de Replicação do DNA , Replicação do DNA , Fatores de Transcrição Forkhead/metabolismo , Fase G1 , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/metabolismo , Bromodesoxiuridina , Imunoprecipitação da Cromatina , Fase G1/genética , Sequenciamento de Nucleotídeos em Larga Escala , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
PLoS One ; 9(5): e98501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24879017

RESUMO

Chromosomal DNA replication involves the coordinated activity of hundreds to thousands of replication origins. Individual replication origins are subject to epigenetic regulation of their activity during S-phase, resulting in differential efficiencies and timings of replication initiation during S-phase. This regulation is thought to involve chromatin structure and organization into timing domains with differential ability to recruit limiting replication factors. Rif1 has recently been identified as a genome-wide regulator of replication timing in fission yeast and in mammalian cells. However, previous studies in budding yeast have suggested that Rif1's role in controlling replication timing may be limited to subtelomeric domains and derives from its established role in telomere length regulation. We have analyzed replication timing by analyzing BrdU incorporation genome-wide, and report that Rif1 regulates the timing of late/dormant replication origins throughout the S. cerevisiae genome. Analysis of pfa4Δ cells, which are defective in palmitoylation and membrane association of Rif1, suggests that replication timing regulation by Rif1 is independent of its role in localizing telomeres to the nuclear periphery. Intra-S checkpoint signaling is intact in rif1Δ cells, and checkpoint-defective mec1Δ cells do not comparably deregulate replication timing, together indicating that Rif1 regulates replication timing through a mechanism independent of this checkpoint. Our results indicate that the Rif1 mechanism regulates origin timing irrespective of proximity to a chromosome end, and suggest instead that telomere sequences merely provide abundant binding sites for proteins that recruit Rif1. Still, the abundance of Rif1 binding in telomeric domains may facilitate Rif1-mediated repression of non-telomeric origins that are more distal from centromeres.


Assuntos
Período de Replicação do DNA/genética , Replicação do DNA/genética , Genoma Fúngico/genética , Origem de Replicação/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ciclo Celular/genética , Centrômero/genética , Pontos de Checagem da Fase S do Ciclo Celular/genética , Telômero/genética
5.
J Cell Biol ; 201(3): 373-83, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23629964

RESUMO

DNA damage slows DNA synthesis at replication forks; however, the mechanisms remain unclear. Cdc7 kinase is required for replication origin activation, is a target of the intra-S checkpoint, and is implicated in the response to replication fork stress. Remarkably, we found that replication forks proceed more rapidly in cells lacking Cdc7 function than in wild-type cells. We traced this effect to reduced origin firing, which results in fewer replication forks and a consequent decrease in Rad53 checkpoint signaling. Depletion of Orc1, which acts in origin firing differently than Cdc7, had similar effects as Cdc7 depletion, consistent with decreased origin firing being the source of these defects. In contrast, mec1-100 cells, which initiate excess origins and also are deficient in checkpoint activation, showed slower fork progression, suggesting the number of active forks influences their rate, perhaps as a result of competition for limiting factors.


Assuntos
Replicação do DNA , Origem de Replicação , Saccharomyces cerevisiae/genética , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Dano ao DNA , DNA Fúngico/biossíntese , DNA Fúngico/genética , Complexo de Reconhecimento de Origem/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Cell ; 148(1-2): 99-111, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265405

RESUMO

The replication of eukaryotic chromosomes is organized temporally and spatially within the nucleus through epigenetic regulation of replication origin function. The characteristic initiation timing of specific origins is thought to reflect their chromatin environment or sub-nuclear positioning, however the mechanism remains obscure. Here we show that the yeast Forkhead transcription factors, Fkh1 and Fkh2, are global determinants of replication origin timing. Forkhead regulation of origin timing is independent of local levels or changes of transcription. Instead, we show that Fkh1 and Fkh2 are required for the clustering of early origins and their association with the key initiation factor Cdc45 in G1 phase, suggesting that Fkh1 and Fkh2 selectively recruit origins to emergent replication factories. Fkh1 and Fkh2 bind Fkh-activated origins, and interact physically with ORC, providing a plausible mechanism to cluster origins. These findings add a new dimension to our understanding of the epigenetic basis for differential origin regulation and its connection to chromosomal domain organization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...