Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(15): 13117-13146, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39073853

RESUMO

Antagonism of the human adenosine A3 receptor (hA3R) has potential therapeutic application. Alchemical relative binding free energy calculations of K18 and K32 suggested that the combination of a 3-(2,6-dichlorophenyl)-isoxazolyl group with 2-pyridinyl at the ends of a carbonyloxycarboximidamide group should improve hA3R affinity. Of the 25 new analogues synthesized, 37 and 74 showed improved hA3R affinity compared to K18 (and K32). This was further improved through the addition of a bromine group to the 2-pyridinyl at the 5-position, generating compound 39. Alchemical relative binding free energy calculations, mutagenesis studies and MD simulations supported the compounds' binding pattern while suggesting that the bromine of 39 inserts deep into the hA3R orthosteric pocket, so highlighting the importance of rigidification of the carbonyloxycarboximidamide moiety. MD simulations highlighted the importance of rigidification of the carbonyloxycarboximidamide, while suggesting that the bromine of 39 inserts deep into the hA3R orthosteric pocket, which was supported through mutagenesis studies 39 also selectively antagonized endogenously expressed hA3R in nonsmall cell lung carcinoma cells, while pharmacokinetic studies indicated low toxicity enabling in vivo evaluation. We therefore suggest that 39 has potential for further development as a high-affinity hA3R antagonist.


Assuntos
Antagonistas do Receptor A3 de Adenosina , Receptor A3 de Adenosina , Humanos , Receptor A3 de Adenosina/metabolismo , Receptor A3 de Adenosina/química , Relação Estrutura-Atividade , Animais , Antagonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/química , Antagonistas do Receptor A3 de Adenosina/síntese química , Simulação de Dinâmica Molecular , Ratos , Células CHO , Linhagem Celular Tumoral , Cricetulus , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química
2.
Diabetologia ; 67(3): 528-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127123

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS: We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS: GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by ß-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION: We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Ilhotas Pancreáticas , Fragmentos de Peptídeos , Humanos , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Hipoglicemia/metabolismo , Insulina/metabolismo
3.
Front Physiol ; 13: 840763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422711

RESUMO

Signalling of the calcitonin-like receptor (CLR) is multifaceted, due to its interaction with receptor activity modifying proteins (RAMPs), and three endogenous peptide agonists. Previous studies have focused on the bias of G protein signalling mediated by the receptor and receptor internalisation of the CLR-RAMP complex has been assumed to follow the same pattern as other Class B1 G Protein-Coupled Receptors (GPCRs). Here we sought to measure desensitisation of the three CLR-RAMP complexes in response to the three peptide agonists, through the measurement of ß-arrestin recruitment and internalisation. We then delved further into the mechanism of desensitisation through modulation of ß-arrestin activity and the expression of GPCR kinases (GRKs), a key component of homologous GPCR desensitisation. First, we have shown that CLR-RAMP1 is capable of potently recruiting ß-arrestin1 and 2, subsequently undergoing rapid endocytosis, and that CLR-RAMP2 and -RAMP3 also utilise these pathways, although to a lesser extent. Following this we have shown that agonist-dependent internalisation of CLR is ß-arrestin dependent, but not required for full agonism. Overexpression of GRK2-6 was then found to decrease receptor signalling, due to an agonist-independent reduction in surface expression of the CLR-RAMP complex. These results represent the first systematic analysis of the importance of ß-arrestins and GRKs in CLR-RAMP signal transduction and pave the way for further investigation regarding other Class B1 GPCRs.

5.
Nature ; 587(7835): 650-656, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33149304

RESUMO

G-protein-coupled receptors (GPCRs) are membrane proteins that modulate physiology across human tissues in response to extracellular signals. GPCR-mediated signalling can differ because of changes in the sequence1,2 or expression3 of the receptors, leading to signalling bias when comparing diverse physiological systems4. An underexplored source of such bias is the generation of functionally diverse GPCR isoforms with different patterns of expression across different tissues. Here we integrate data from human tissue-level transcriptomes, GPCR sequences and structures, proteomics, single-cell transcriptomics, population-wide genetic association studies and pharmacological experiments. We show how a single GPCR gene can diversify into several isoforms with distinct signalling properties, and how unique isoform combinations expressed in different tissues can generate distinct signalling states. Depending on their structural changes and expression patterns, some of the detected isoforms may influence cellular responses to drugs and represent new targets for developing drugs with improved tissue selectivity. Our findings highlight the need to move from a canonical to a context-specific view of GPCR signalling that considers how combinatorial expression of isoforms in a particular cell type, tissue or organism collectively influences receptor signalling and drug responses.


Assuntos
Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Bases de Dados Factuais , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Terapia de Alvo Molecular , Especificidade de Órgãos/efeitos dos fármacos , Isoformas de Proteínas/genética , Proteômica , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Análise de Célula Única
6.
Int Arch Med ; 1(1): 3, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18471314

RESUMO

INTRODUCTION: Lactic acidosis often occurs in severely unwell patients presenting to Accident and Emergency. It is commonly associated with either hypoxia or decreased tissue perfusion secondary due to cardiovascular collapse or sepsis. CASE PRESENTATION: We present a case of severe lactic acidosis in the presence of normal tissue perfusion and oxygenation in a 31-year-old patient with poorly-controlled asthma. Acidosis promptly reversed on discontinuation of inhaled beta-agonists. CONCLUSION: Lactic acidosis secondary to inhaled beta-agonist administration may be a common scenario which can be misinterpreted very easily and can confuse the clinical picture. Further studies will be needed to establish the exact aetiology of this lactic acid production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA