Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109894, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38783999

RESUMO

We show that the non-canonical nucleobase 2,6-diaminopurine (D) spontaneously base pairs with uracil (U) in water and the solid state without the need to be attached to the ribose-phosphate backbone. Depending on the reaction conditions, D and U assemble in thermodynamically stable hydrated and anhydrated D-U base-paired cocrystals. Under UV irradiation, an aqueous solution of D-U base-pair undergoes photochemical degradation, while a pure aqueous solution of U does not. Our simulations suggest that D may trigger the U photodimerization and show that complementary base-pairing modifies the photochemical properties of nucleobases, which might have implications for prebiotic chemistry.

2.
Life (Basel) ; 12(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35330155

RESUMO

The origin of life might be sparked by the polymerization of the first RNA molecules in Darwinian ponds during wet-dry cycles. The key life-building block ribose was found in carbonaceous chondrites. Its exogenous delivery onto the Hadean Earth could be a crucial step toward the emergence of the RNA world. Here, we investigate the formation of ribose through a simplified version of the formose reaction inside carbonaceous chondrite parent bodies. Following up on our previous studies regarding nucleobases with the same coupled physico-chemical model, we calculate the abundance of ribose within planetesimals of different sizes and heating histories. We perform laboratory experiments using catalysts present in carbonaceous chondrites to infer the yield of ribose among all pentoses (5Cs) forming during the formose reaction. These laboratory yields are used to tune our theoretical model that can only predict the total abundance of 5Cs. We found that the calculated abundances of ribose were similar to the ones measured in carbonaceous chondrites. We discuss the possibilities of chemical decomposition and preservation of ribose and derived constraints on time and location in planetesimals. In conclusion, the aqueous formose reaction might produce most of the ribose in carbonaceous chondrites. Together with our previous studies on nucleobases, we found that life-building blocks of the RNA world could be synthesized inside parent bodies and later delivered onto the early Earth.

3.
J Phys Chem A ; 124(41): 8594-8606, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961050

RESUMO

Hydrogen cyanide (HCN) and formaldehyde (H2CO) are key precursors to biomolecules such as nucleobases and amino acids in planetary atmospheres. However, many reactions which produce and destroy these species in atmospheres containing CO2 and H2O are still missing from the literature. We use a quantum chemistry approach to find these missing reactions and calculate their rate coefficients using canonical variational transition state theory and Rice-Ramsperger-Kassel-Marcus/master equation theory at the BHandHLYP/aug-cc-pVDZ level of theory. We calculate the rate coefficients for 126 total reactions and validate our calculations by comparing with experimental data in the 39% of available cases. Our calculated rate coefficients are most frequently within a factor of 2 of experimental values and generally always within an order of magnitude of these values. We discover 45 previously unknown reactions and identify 6 from this list that are most likely to dominate H2CO and HCN production and destruction in planetary atmospheres. We highlight 1O + CH3 → H2CO + H as a new key source and H2CO + 1O → HCO + OH as a new key sink, for H2CO in upper planetary atmospheres. In this effort, we develop an oxygen extension to our consistent reduced atmospheric hybrid chemical network (CRAHCN-O), building off our previously developed network for HCN production in N2-, CH4-, and H2-dominated atmospheres (CRAHCN). This extension can be used to simulate both HCN and H2CO production in atmospheres dominated by any of CO2, N2, H2O, CH4, and H2.

4.
J Phys Chem A ; 123(9): 1861-1873, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30721064

RESUMO

HCN is a key ingredient for synthesizing biomolecules such as nucleobases and amino acids. We calculate 42 reaction rate coefficients directly involved with or in competition with the production of HCN in the early Earth or Titan atmospheres. These reactions are driven by methane and nitrogen radicals produced via UV photodissociation or lightning. For every reaction in this network, we calculate rate coefficients at 298 K using canonical variational transition state theory (CVT) paired with computational quantum chemistry simulations at the BHandHLYP/aug-cc-pVDZ level of theory. We also calculate the temperature dependence of the rate coefficients for the reactions that have barriers from 50 to 400 K. We present 15 new reaction rate coefficients with no previously known value; 93% of our calculated coefficients are within an order of magnitude of the nearest experimental or recommended values. Above 320 K, the rate coefficient for the new reaction H2CN → HCN + H dominates. Contrary to experiments, we find the HCN reaction pathway, N + CH3 → HCN + H2, to be inefficient and suggest that the experimental rate coefficient actually corresponds to an indirect pathway, through the H2CN intermediate. We present CVT using energies computed with density functional theory as a feasible and accurate method for calculating a large network of rate coefficients of small-molecule reactions.

5.
Astrobiology ; 18(3): 343-364, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29570409

RESUMO

Estimates of the time at which life arose on Earth make use of two types of evidence. First, astrophysical and geophysical studies provide a timescale for the formation of Earth and the Moon, for large impact events on early Earth, and for the cooling of the early magma ocean. From this evidence, we can deduce a habitability boundary, which is the earliest point at which Earth became habitable. Second, biosignatures in geological samples, including microfossils, stromatolites, and chemical isotope ratios, provide evidence for when life was actually present. From these observations we can deduce a biosignature boundary, which is the earliest point at which there is clear evidence that life existed. Studies with molecular phylogenetics and records of the changing level of oxygen in the atmosphere give additional information that helps to determine the biosignature boundary. Here, we review the data from a wide range of disciplines to summarize current information on the timings of these two boundaries. The habitability boundary could be as early as 4.5 Ga, the earliest possible estimate of the time at which Earth had a stable crust and hydrosphere, or as late as 3.9 Ga, the end of the period of heavy meteorite bombardment. The lack of consensus on whether there was a late heavy meteorite bombardment that was significant enough to prevent life is the largest uncertainty in estimating the time of the habitability boundary. The biosignature boundary is more closely constrained. Evidence from carbon isotope ratios and stromatolite fossils both point to a time close to 3.7 Ga. Life must have emerged in the interval between these two boundaries. The time taken for life to appear could, therefore, be within 200 Myr or as long as 800 Myr. Key Words: Origin of life-Astrobiology-Habitability-Biosignatures-Geochemistry-Early Earth. Astrobiology 18, 343-364.


Assuntos
Planeta Terra , Origem da Vida , Isótopos de Carbono , Evolução Molecular , Exobiologia , Fósseis , Filogenia , Fatores de Tempo , Água
6.
Proc Natl Acad Sci U S A ; 114(43): 11327-11332, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28973920

RESUMO

Before the origin of simple cellular life, the building blocks of RNA (nucleotides) had to form and polymerize in favorable environments on early Earth. At this time, meteorites and interplanetary dust particles delivered organics such as nucleobases (the characteristic molecules of nucleotides) to warm little ponds whose wet-dry cycles promoted rapid polymerization. We build a comprehensive numerical model for the evolution of nucleobases in warm little ponds leading to the emergence of the first nucleotides and RNA. We couple Earth's early evolution with complex prebiotic chemistry in these environments. We find that RNA polymers must have emerged very quickly after the deposition of meteorites (less than a few years). Their constituent nucleobases were primarily meteoritic in origin and not from interplanetary dust particles. Ponds appeared as continents rose out of the early global ocean, but this increasing availability of "targets" for meteorites was offset by declining meteorite bombardment rates. Moreover, the rapid losses of nucleobases to pond seepage during wet periods, and to UV photodissociation during dry periods, mean that the synthesis of nucleotides and their polymerization into RNA occurred in just one to a few wet-dry cycles. Under these conditions, RNA polymers likely appeared before 4.17 billion years ago.


Assuntos
Fontes Hidrotermais , Modelos Teóricos , Nucleotídeos/química , RNA/química , Adenina/química , Poeira Cósmica , Planeta Terra , Evolução Molecular , Meteoroides , Origem da Vida , Polimerização , Uracila/química
7.
Astrobiology ; 16(11): 853-872, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27827540

RESUMO

The possible meteorite parent body origin of Earth's pregenetic nucleobases is substantiated by the guanine (G), adenine (A), and uracil (U) measured in various meteorites. Cytosine (C) and thymine (T), however, are absent in meteorites, making the emergence of an RNA and later RNA/DNA/protein world problematic. We investigated the meteorite parent body (planetesimal) origin of all nucleobases by computationally modeling 18 reactions that potentially contribute to nucleobase formation in such environments. Out of this list, we identified the two most important reactions for each nucleobase and found that these involve small molecules such as HCN, CO, NH3, and water that ultimately arise from the protoplanetary disks in which planetesimals are built. The primary result of this study is that cytosine is unlikely to persist within meteorite parent bodies due to aqueous deamination. Thymine has a thermodynamically favorable reaction pathway from uracil, formaldehyde, and formic acid but likely did not persist within planetesimals containing H2O2 due to an oxidation reaction with this molecule. Finally, while Fischer-Tropsch (FT) synthesis is found to be the dominant source of nucleobases within our model planetesimal, non-catalytic (NC) synthesis may still be significant under certain chemical conditions (e.g., within CR2 parent bodies). We discuss several major consequences of our results for the origin of the RNA world. Key Words: Astrobiology-Cosmochemistry-Meteorites-RNA world-Abiotic organic synthesis. Astrobiology 16, 853-872.


Assuntos
Meteoroides , Modelos Teóricos , Planetas , RNA/química , Pressão , Purinas/análise , Pirimidinas/análise , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...