Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 13(3): e6895, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38214136

RESUMO

BACKGROUND: Cisplatin is a primary chemotherapy choice for various solid tumors. DNA damage caused by cisplatin results in apoptosis of tumor cells. Cisplatin-induced DNA damage, however, may also result in mutations in normal cells and the initiation of secondary malignancies. In the current study, we have used the erythrocyte PIG-A assay to evaluate mutagenesis in non-tumor hematopoietic tissue of cancer patients receiving cisplatin chemotherapy. METHODS: Twenty-one head and neck cancer patients undergoing treatment with cisplatin were monitored for the presence of PIG-A mutant total erythrocytes and the young erythrocytes, reticulocytes (RETs), in peripheral blood for up to five and a half months from the initiation of the anti-neoplastic chemotherapy. RESULTS: PIG-A mutant frequency (MF) in RETs increased at least two-fold in 15 patients at some point of the monitoring, while the frequency of total mutant RBCs increased at least two-fold in 6 patients. A general trend for an increase in the frequency of mutant RETs and total mutant RBCs was observed in 19 and 18 patients, respectively. Only in one patient did both RET and total RBC PIG-A MFs did not increase at any time-point over the monitoring period. CONCLUSION: Cisplatin chemotherapy induces moderate increases in the frequency of PIG-A mutant erythrocytes in head and neck cancer patients. Mutagenicity measured with the flow cytometric PIG-A assay may serve as a tool for predicting adverse outcomes of genotoxic antineoplastic therapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Segunda Neoplasia Primária , Humanos , Cisplatino/efeitos adversos , Eritrócitos , Mutagênese , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética
2.
Food Chem Toxicol ; 160: 112780, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34965465

RESUMO

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the key tobacco-specific nitrosamines that plays an important role in human lung carcinogenesis. Repeated dose inhalation toxicity data on NNK, particularly relevant to cigarette smoking, however, is surprisingly limited. Hence, there is a lack of direct information available on the carcinogenic and potential non-carcinogenic effects of NNK via inhalational route exposure. In the present study, the subchronic inhalation toxicity of NNK was evaluated in Sprague Dawley rats. Both sexes (9-10 weeks age; 23 rats/sex/group) were exposed by nose-only inhalation to air, vehicle control (75% propylene glycol), or 0.2, 0.8, 3.2, or 7.8 mg/kg body weight (BW)/day of NNK (NNK aerosol concentrations: 0, 0, 0.0066, 0.026, 0.11, or 0.26 mg/L air) for 1 h/day for 90 consecutive days. Toxicity was evaluated by assessing body weights; food consumption; clinical pathology; histopathology; organ weights; blood, urine, and tissue levels of NNK, its major metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and their glucuronides (reported as total NNK, tNNK, and total NNAL, tNNAL, respectively); tissue levels of the DNA adduct O6-methylguanine; blood and bone marrow micronucleus (MN) frequency; and bone marrow DNA strand breaks (comet assay). The results showed that NNK exposure caused multiple significant adverse effects, with the most sensitive endpoint being non-neoplastic lesions in the nose. Although the genotoxic biomarker O6-methylguanine was detected, genotoxicity from NNK exposure was negative in the MN and comet assays. The Lowest-Observed-Adverse-Effect-Level (LOAEL) was 0.8 mg/kg BW/day or 0.026 mg/L air of NNK for 1 h/day for both sexes. The No-Observed-Adverse-Effect-Level (NOAEL) was 0.2 mg/kg BW/day or 0.0066 mg/L air of NNK for 1 h/day for both sexes. The results of this study provide new information relevant to assessing the human exposure hazard of NNK.


Assuntos
Exposição por Inalação/efeitos adversos , Nicotiana/toxicidade , Nitrosaminas/toxicidade , Animais , Fumar Cigarros/efeitos adversos , Adutos de DNA/genética , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Testes para Micronúcleos , Nível de Efeito Adverso não Observado , Nariz/efeitos dos fármacos , Nariz/patologia , Ratos , Ratos Sprague-Dawley , Fumaça/efeitos adversos , Nicotiana/química
3.
Environ Mol Mutagen ; 62(9): 482-489, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34647641

RESUMO

In order to investigate the possibility that treatment age affects the genotoxic response to ethyl methane sulfonate (EMS) exposure, we dosed gpt-delta neonatal mice on postnatal days 1-28 with 5-100 mg/kg/day of EMS and measured micronucleus (MN) induction in peripheral blood and gpt gene mutation in liver, lung, bone marrow, small intestine, spleen, and kidney. The data were compared to measurements from similarly exposed adult gpt-delta mice. Our results indicate that the peripheral blood MN frequencies in mice treated as neonates are not substantially different from those measured in mice treated as adults. There were, however, differences in tissue-specific gpt mutation responses in mice treated with EMS as neonates and adults. Greater mutant frequencies were seen in DNA isolated from kidney of mice treated as neonates, whereas the mutant frequencies in bone marrow, liver, and spleen were greater in the animals treated as adults. Benchmark dose potency ranking indicated that the differences for kidney were significant. Our data indicate that there are differences in EMS-induced genotoxicity between mice treated as adults and neonates; the differences, however, are relatively small.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Metanossulfonato de Etila/toxicidade , Mutagênicos/toxicidade , Fatores Etários , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Feminino , Rim/efeitos dos fármacos , Masculino , Camundongos Transgênicos , Testes para Micronúcleos , Reticulócitos/efeitos dos fármacos
4.
Toxicol Sci ; 183(2): 319-337, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34329464

RESUMO

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the key tobacco-specific nitrosamines that plays an important role in human lung carcinogenesis. However, repeated inhalation toxicity data on NNK, which is more directly relevant to cigarette smoking, are currently limited. In the present study, the subacute inhalation toxicity of NNK was evaluated in Sprague Dawley rats. Both sexes (9-10 weeks age; 16 rats/sex/group) were exposed by nose-only inhalation to air, vehicle control (75% propylene glycol), or 0.8, 3.2, 12.5, or 50 mg/kg body weight (BW)/day of NNK (NNK aerosol concentrations: 0, 0, 0.03, 0.11, 0.41, or 1.65 mg/L air) for 1 h/day for 14 consecutive days. Toxicity was evaluated by assessing body and organ weights; food consumption; clinical pathology; histopathology observations; blood, urine, and tissue levels of NNK, its major metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and their glucuronides (reported as total NNK, tNNK, and total NNAL, tNNAL, respectively); O6-methylguanine DNA adduct formation; and blood and bone marrow micronucleus frequency. Whether the subacute inhalation toxicity of NNK followed Haber's Rule was also determined using additional animals exposed 4 h/day. The results showed that NNK exposure caused multiple significant adverse effects, with the most sensitive endpoint being non-neoplastic histopathological lesions in the nose. The lowest-observed-adverse-effect level (LOAEL) was 0.8 mg/kg BW/day or 0.03 mg/L air for 1 h/day for both sexes. An assessment of Haber's Rule indicated that 14-day inhalation exposure to the same dose at a lower concentration of NNK aerosol for a longer time (4 h daily) resulted in greater adverse effects than exposure to a higher concentration of NNK aerosol for a shorter time (1 h daily).


Assuntos
Nitrosaminas , Animais , Carcinógenos/toxicidade , Cromatografia Líquida de Alta Pressão , Feminino , Pulmão , Masculino , Nitrosaminas/toxicidade , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
5.
Toxicol Sci ; 182(1): 10-28, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33944952

RESUMO

The tobacco-specific nitrosamine NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone] is found in tobacco products and tobacco smoke. NNK is a potent genotoxin and human lung carcinogen; however, there are limited inhalation data for the toxicokinetics (TK) and genotoxicity of NNK in vivo. In the present study, a single dose of 5 × 10-5, 5 × 10-3, 0.1, or 50 mg/kg body weight (BW) of NNK, 75% propylene glycol (vehicle control), or air (sham control) was administered to male Sprague-Dawley (SD) rats (9-10 weeks age) via nose-only inhalation (INH) exposure for 1 h. For comparison, the same doses of NNK were administered to male SD rats via intraperitoneal injection (IP) and oral gavage (PO). Plasma, urine, and tissue specimens were collected at designated time points and analyzed for levels of NNK and its major metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and tissue levels of DNA adduct O6-methylguanine by LC/MS/MS. TK data analysis was performed using a non-linear regression program. For the genotoxicity subgroup, tissues were collected at 3 h post-dosing for comet assay analysis. Overall, the TK data indicated that NNK was rapidly absorbed and metabolized extensively to NNAL after NNK administration via the three routes. The IP route had the greatest systemic exposure to NNK. NNK metabolism to NNAL appeared to be more efficient via INH than IP or PO. NNK induced significant increases in DNA damage in multiple tissues via the three routes. The results of this study provide new information and understanding of the TK and genotoxicity of NNK.


Assuntos
Nitrosaminas , Espectrometria de Massas em Tandem , Animais , Carcinógenos , Cromatografia Líquida de Alta Pressão , Dano ao DNA , Exposição por Inalação , Injeções Intraperitoneais , Masculino , Nitrosaminas/toxicidade , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Toxicocinética
6.
Environ Mol Mutagen ; 62(4): 265-272, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33666279

RESUMO

It was previously demonstrated that procarbazine (PCZ) is positive in the rat erythrocyte Pig-a gene mutation assay. However, since mammalian erythrocytes lack genomic DNA, it was necessary to analyze nucleated bone-marrow erythroid precursor cells to confirm that PCZ induces mutations in the Pig-a gene (Revollo et al., Environ Mol Mutagen, 2020). In this study, the association between Pig-a mutation and loss of GPI anchors was further strengthened and the genesis of Pig-a mutation in PCZ-dosed rats was evaluated by analyzing bone-marrow granulocytes. Erythrocytes and granulocytes both originate from myeloid progenitor cells, but granulocytes contain DNA throughout their developmental stages. F344 rats were treated with three doses of 150 mg/kg PCZ; 2 weeks later, CD48-deficient mutant phenotype bone-marrow granulocytes (BMGs [CD11b+ ]) were isolated by flow-cytometric sorting. Sequencing data showed that the CD48-deficient mutant phenotype BMGs contained mutations in the Pig-a gene while wild-type BMGs did not. PCZ-induced mutations included missense, nonsense and splice site variants; the majority of mutations were A > T, A > C, and A > G, with the mutated A on the nontranscribed DNA strand. The PCZ-induced mutational analysis in BMGs supports the association between the phenotype measured in the Pig-a assay and mutation in the Pig-a gene. Also, PCZ mutation spectra were similar in bone-marrow erythroids and BMGs, but none of the mutations detected in BMGs were the same as the erythroid precursor cell mutations from the same rats. Thus, mutations induced in the Pig-a assay appear to be induced after commitment of myeloid progenitor cells to either the granulocyte or erythroid pathway.


Assuntos
Antineoplásicos/toxicidade , Medula Óssea/patologia , Granulócitos/patologia , Proteínas de Membrana/genética , Mutação , Procarbazina/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Masculino , Testes de Mutagenicidade , Ratos , Ratos Endogâmicos F344
7.
Environ Mol Mutagen ; 61(8): 797-806, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32729949

RESUMO

Procarbazine (PCZ) and N-propyl-N-nitrosourea (PNU) are rodent mutagens and carcinogens. Both induce GPI-anchored marker-deficient mutant-phenotype red blood cells (RBCs) in the flow cytometry-based rat RBC Pig-a assay. In the present study, we traced the origin of the RBC mutant phenotype by analyzing Pig-a mutations in the precursors of RBCs, bone marrow erythroid cells (BMEs). Rats were exposed to a total of 450 mg/kg PCZ hydrochloride or 300 mg/kg PNU, and bone marrow was collected 2, 7, and 10 weeks later. Using a flow cell sorter, we isolated CD59-deficient mutant-phenotype BMEs from PCZ- and PNU-treated rats and examined their endogenous X-linked Pig-a gene by next generation sequencing. Pig-a mutations consistent with the properties of PCZ and PNU were found in sorted mutant-phenotype BMEs. PCZ induced mainly A > T transversions with the mutated A on the nontranscribed strand of the Pig-a gene, while PNU induced mainly T > A transversions with the mutated T on the nontranscribed strand. The treatment-induced mutations were distributed across the protein coding sequence of the Pig-a gene. The causal relationship between BMEs and RBCs and the agent-specific mutational spectra in CD59-deicient BMEs indicate that the rat RBC Pig-a assay, scoring CD59-deficient mutant-phenotype RBCs in peripheral blood, detects Pig-a gene mutation.


Assuntos
Antineoplásicos/toxicidade , Células da Medula Óssea/efeitos dos fármacos , Antígenos CD59/genética , Proteínas de Membrana/genética , Mutação , Compostos de Nitrosoureia/toxicidade , Procarbazina/toxicidade , Animais , Células da Medula Óssea/imunologia , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley
8.
Artigo em Inglês | MEDLINE | ID: mdl-31708078

RESUMO

Flow cytometry-based phenotypic detection of red blood cells (RBCs) deficient in surface markers anchored by glycosylphosphatidylinositol (GPI) is an efficient tool for monitoring somatic mutation in mammalian species. Biochemical considerations suggest that GPI-anchored marker-deficient RBCs found in peripheral blood are due to mutations in the endogenous X-linked phosphatidylinositolglycan, class A gene (Pig-a gene). Yet the linkage between the detected mutant phenotype and the actual mutation in the Pig-a gene is difficult to establish directly in mammalian RBCs that are naturally free of genomic DNA and may have only traces of heavily degraded mRNA. We have traced the origin of the marker-deficient RBC phenotype in the precursors of peripheral RBCs, bone marrow erythroid cells (BMEs, also known as erythroblasts), in rats treated by gavage with 75 mg/kg of the potent mutagen, 7,12-dimethyl-benz[a]anthracene (DMBA). The frequencies of marker-deficient BMEs were significantly increased in DMBA-treated rats. We identified Pig-a mutations in sorted mutant phenotype BMEs. The spectrum of DMBA-induced Pig-a mutations in erythroid lineage cells was identical to the spectra of mutations previously determined for the Pig-a and for another X-linked reporter gene, hypoxanthine-guanine phosphoribosyltransferase gene, in cells of lymphoid lineage, spleen T-lymphocytes. Our observations lend additional support to the hypothesis that GPI-anchored marker-deficient RBCs are true Pig-a mutants.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Medula Óssea/efeitos dos fármacos , Eritroblastos/efeitos dos fármacos , Proteínas de Membrana/genética , Mutação , Animais , Medula Óssea/metabolismo , Ratos
9.
Artigo em Inglês | MEDLINE | ID: mdl-30595212

RESUMO

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a genotoxic carcinogen found in tobacco and tobacco smoke. Several in vitro and in vivo assays have been used for evaluating the genotoxicity of tobacco smoke and tobacco smoke constituents like NNK, yet it is not clear which in vitro assays are most appropriate for extrapolating the in vitro responses of these test agents to animal models and humans. The Pig-a gene mutation assay can be performed in vitro, in laboratory animals, and in humans, a potential benefit in estimating in vivo responses from in vitro data. In the current study we used Pig-a as a reporter of gene mutation both in vitro, in L5178Y/Tk+/- cells, and in vivo, in Sprague-Dawley rats. NNK significantly increased Pig-a mutant frequency in L5178Y/Tk+/- cells, but only at concentrations of 100 µg/ml and greater, and only in the presence of S9 activation. Pig-a mutations in L5178Y/Tk+/- cells were detected in 80% of the NNK-induced mutants, with the predominate mutation being G→A transition; vehicle control mutants contained deletions. In the in vivo study, rats were exposed to NNK daily for 90 days by inhalation, a common route of exposure to NNK for humans. Although elevated mutant frequencies were detected, these responses were not clearly associated with NNK exposure, so that overall, the in vivo Pig-a assays were negative. Thus, while NNK induces mutations in the in vitro Pig-a assay, the in vivo Pig-a assay has limited ability to detect NNK mutagenicity under conditions relevant to NNK exposure in smokers.


Assuntos
Proteínas de Membrana/genética , Mutação/efeitos dos fármacos , Nitrosaminas/toxicidade , Animais , Linhagem Celular Tumoral , Feminino , Masculino , Camundongos , Testes de Mutagenicidade , Mutação/genética , Taxa de Mutação , Ratos , Ratos Sprague-Dawley , Nicotiana/química
10.
Environ Mol Mutagen ; 59(8): 715-721, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30255594

RESUMO

Somatic mutations accumulate in the human genome and are correlated with increased cancer incidence as humans age. The standard model for studying the carcinogenic effects of exposures for human risk assessment is the rodent 2-year carcinogenicity assay. However, there is little information regarding the effect of age on cancer-driver gene mutations in these models. The mutant fraction (MF) of Kras codon 12 GGT to GAT and GGT to GTT mutations, oncogenic mutations orthologous between humans and rodents, was quantified over the lifespan of B6C3F1 mice. MFs were measured in lung and liver tissue, organs that frequently develop tumors following carcinogenic exposures. The MFs were evaluated at 4, 6, 8, 12, 21, and 85 weeks, with the 12-week and 21-week time points being coincident with the conclusion of 28-day and 90-day exposure durations used in short-term toxicity testing. The highly sensitive and quantitative Allele-specific Competitive Blocker PCR (ACB-PCR) assay was used to quantify the number of mutant Kras codon 12 alleles. The mouse lung showed a slight, but significant trend increase in the Kras codon 12 GAT mutation over the 85-week period. The trend with age can be equally well-fit by several non-linear functions, but not by a linear function. In contrast, the liver GAT mutation did not increase, and the GTT mutation did not increase for either organ. Even with the slight increase in the lung GAT MFs, our results indicate that the future use of Kras mutation as a biomarker of carcinogenic effect will not be confounded by animal age. Environ. Mol. Mutagen. 59:715-721, 2018. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Envelhecimento/genética , Genes ras/genética , Fígado/citologia , Pulmão/citologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinogênese/genética , Humanos , Masculino , Camundongos , Mutação/genética , Neoplasias/genética , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética
11.
Environ Mol Mutagen ; 59(8): 733-741, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30091248

RESUMO

The in vivo erythrocyte Pig-a gene mutation assay measures the phenotypic loss of GPI-anchored surface markers. Molecular analysis of the marker-deficient erythrocytes cannot provide direct proof that the mutant phenotype is due to mutation in the Pig-a gene because mammalian erythrocytes lack genomic DNA. Granulocytes are nucleated cells that originate from myeloid progenitor cells in bone marrow as is the case for erythrocytes, and thus analysis of Pig-a mutation in bone marrow granulocytes can provide information about the source of mutations detected in the erythrocyte Pig-a assay. We developed a flow cytometric Pig-a assay for bone marrow granulocytes and evaluated granulocyte Pig-a mutant frequencies in bone marrow from male rats treated acutely with N-ethyl-N-nitrosourea (ENU). Bone marrow cells from these rats were stained with anti-CD11b for identifying granulocytes and anti-CD48 for detecting the Pig-a mutant phenotype. The average Pig-a mutant frequency in granulocyte precursors of control rats was 8.42 × 10-6 , whereas in ENU-treated rats it was 567.13 × 10-6 . CD11b-positive/CD48-deficient mutant cells were enriched using magnetic separation and sorted into small pools for sequencing. While there were no Pig-a mutations found in sorted CD48-positive wild-type cells, Pig-a mutations were detected in mutant granulocyte precursors. The most frequent mutation observed was T→A transversion, followed by T→C transition and T→G transversion, with the mutated T on the nontranscribed DNA strand. While the spectrum of mutations in bone marrow granulocytes was similar to that of erythroid cells, different Pig-a mutations were found in mutant-phenotype granulocytes and erythroids from the same bone marrow samples, suggesting that most Pig-a mutations were induced in bone marrow cells after commitment to either the granulocyte or erythroid developmental pathway. Environ. Mol. Mutagen. 59:733-741, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Antígeno CD11b/imunologia , Antígeno CD48/imunologia , Citometria de Fluxo/métodos , Glicosilfosfatidilinositóis/biossíntese , Granulócitos/citologia , Proteínas de Membrana/genética , Animais , Anticorpos/imunologia , Células da Medula Óssea/citologia , Etilnitrosoureia/toxicidade , Masculino , Ratos , Ratos Endogâmicos F344
12.
Environ Mol Mutagen ; 59(8): 722-732, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30091272

RESUMO

We have established a flow cytometry-based Pig-a assay for rat bone marrow erythroid cells (BMEs). The BME Pig-a assay uses a DNA-specific stain and two antibodies: one against the transmembrane transferrin receptor (CD71 marker) and the other against the GPI-anchored complement inhibitory protein (CD59 marker). In F344 male rats treated acutely with a total of 120 mg/kg of N-ethyl-N-nitrosourea (ENU) the frequency of CD59-deficient phenotypically mutant BMEs increased approximately 24-fold compared to the rats concurrently treated with the vehicle. Such an increase of mutant BMEs coincides with increases of CD59-deficient reticulocytes measured in rats treated with similar doses of ENU. Sequence analysis of the endogenous X-linked Pig-a gene of CD59-deficient BMEs revealed that they are Pig-a mutants. The spectrum of ENU-induced Pig-a mutations in these BMEs was consistent with the in vivo mutagenic signature of ENU: 73% of mutations occurred at A:T basepairs, with the mutated T on the nontranscribed strand of the gene. T→A transversion was the most frequent mutation followed by T→C transition; no deletion or insertion mutations were present in the spectrum. Since BMEs are precursors of peripheral red blood cells, our findings suggest that CD59-deficient erythrocytes measured in the flow cytometric erythrocyte Pig-a assay develop from BMEs containing mutations in the Pig-a gene. Thus, the erythrocyte Pig-a assay detects mutation in the Pig-a gene. Environ. Mol. Mutagen. 59:722-732, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Antígenos CD/imunologia , Antígenos CD59/imunologia , Células Eritroides/citologia , Citometria de Fluxo/métodos , Glicosilfosfatidilinositóis/biossíntese , Proteínas de Membrana/genética , Receptores da Transferrina/imunologia , Animais , Anticorpos/imunologia , Células da Medula Óssea/citologia , Eritrócitos/citologia , Etilnitrosoureia/toxicidade , Masculino , Ratos , Ratos Endogâmicos F344 , Reticulócitos/citologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-29704995

RESUMO

Genetic toxicology assays estimate mutation frequencies by phenotypically screening for the activation or inactivation of endogenous or exogenous reporter genes. These reporters can only detect mutations in narrow areas of the genome and their use is often restricted to certain in vitro and in vivo models. Here, we show that Interclonal Genetic Variation (ICGV) can directly identify mutations genome-wide by comparing sequencing data of single-cell clones derived from the same source or organism. Upon ethyl methanesulfonate (EMS) exposure, ICGV detected greater levels of mutation in a dose- and time-dependent manner in E. coli. In addition, ICGV was also able to identify a ∼20-fold increase in somatic mutations in T-cell clones derived from an N-ethyl-N-nitrosourea (ENU)-treated rat vs. a vehicle-treated rat. These results demonstrate that the genetic differences of single-cell clones can be used for genome-wide mutation detection.


Assuntos
Células Clonais/química , Análise Mutacional de DNA/métodos , Escherichia coli/genética , Metanossulfonato de Etila/toxicidade , Análise de Célula Única/métodos , Animais , Relação Dose-Resposta a Droga , Etilnitrosoureia/farmacologia , Variação Genética , Genoma Bacteriano , Fenótipo , Ratos , Tempo , Sequenciamento Completo do Genoma
14.
Environ Mol Mutagen ; 59(1): 4-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29098723

RESUMO

The X-linked Pig-a gene encodes an enzyme required for the biosynthesis of glycosyl phosphatidylinositol (GPI) anchors. Pig-a mutant cells fail to synthesize GPI and to express GPI-anchored protein markers (e.g., CD90) on their surface. Marker deficiency serves as a phenotypic indicator of Pig-a mutation in various in vivo assays. Here, we describe an in vitro Pig-a mutation assay in L5178YTk+/- mouse lymphoma cells, in which mutant-phenotype cells are measured by flow cytometry using a fluorescent anti-CD90 antibody. Increased frequencies of CD90-deficient mutants were detected in cells treated with benzo[a]pyrene (B[a]P), N-ethyl-N-nitrosourea (ENU), ethyl methanesulphonate, and 7,12-dimethylbenz[a]anthracene, with near maximum mutant frequencies measured eight days after treatment. The CD90 deficiency in mutant cells quantified by flow cytometry was shown to be due to loss of GPI anchors in a limiting-dilution cloning assay using proaerolysin selection. Individual CD90-deficient cells from cultures treated with ENU, B[a]P, and vehicle were sorted and clonally expanded for molecular analysis of their Pig-a gene. Pig-a mutations with agent-specific signatures were found in nearly all clones that developed from sorted CD90-deficient cells. These results indicate that a Pig-a mutation assay can be successfully conducted in L5178YTk+/- cells. The assay may be useful for mutagenicity screening of environmental agents as well as for testing hypotheses in vitro before committing to in vivo Pig-a assays. Environ. Mol. Mutagen. 59:4-17, 2018. Published 2017. This article is a US Government work and is in the public domain in the USA.


Assuntos
Bioensaio/métodos , Linfoma/genética , Proteínas de Membrana/genética , Mutação/genética , Animais , Benzo(a)pireno/farmacologia , Linhagem Celular Tumoral , Metanossulfonato de Etila , Etilnitrosoureia/farmacologia , Citometria de Fluxo/métodos , Camundongos , Mutagênicos/farmacologia , Mutação/efeitos dos fármacos , Antígenos Thy-1/metabolismo
15.
Mutagenesis ; 32(6): 571-579, 2017 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-29237063

RESUMO

Procarbazine is a primary component of antineoplastic combination chemotherapy often used for the treatment of Hodgkin's lymphoma. It is believed that cytostatic and cytotoxic properties of procarbazine are mediated via its interaction with genomic DNA. Procarbazine is a carcinogen in animal models; it is classified as Group 2A compound by IARC. Also it is known as an in vitro and in vivo mutagen and genotoxicant. However, the molecular mechanism by which procarbazine induces mutations is not thoroughly understood and the spectrum of procarbazine-induced in vivo mutations is described insufficiently. We employed flow cytometry-based erythrocyte and T lymphocyte assays in order to quantify the frequencies of cells deficient in glycosylphosphatidyl inositol-anchored surface markers CD59 and CD48 (presumed mutants in the endogenous X-linked Pig-a gene) in rats. The rats were treated once daily with 100 mg/kg procarbazine HCl for 3 days. In addition, we sorted mutant-phenotype spleen T cells and immediately analysed their Pig-a gene using next generation sequencing of dual-indexed multiplex libraries and error-correcting data filtering. More than 100-fold increase in the frequencies of CD59-deficient RBCs was observed at Day 29 after the last administration, and a 10-fold increase in the frequency of CD48-deficient T cells was observed at Days 45 to 50. Sequencing revealed that, in T cells from procarbazine-treated rats, mutations in the Pig-a gene occurred predominantly at A:T basepairs when A was located on the non-transcribed DNA strand. A→T transversion was the most common mutation. Our results suggest that, at least for the transcribed X-linked Pig-a gene, in vivo methyl guanine adducts are not the major contributors to mutations induced by procarbazine.


Assuntos
Proteínas de Membrana/genética , Mutação/genética , Procarbazina/toxicidade , Linfócitos T/metabolismo , Animais , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Análise Mutacional de DNA , Procarbazina/química , Ratos Sprague-Dawley , Baço/citologia , Linfócitos T/efeitos dos fármacos
16.
Food Chem Toxicol ; 87: 120-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26686995

RESUMO

Acrylamide (ACR) and glycidyl methacrylate (GMA) are structurally related compounds used for making polymers with various properties. Both chemicals can be present in food either as a byproduct of processing or a constituent of packaging. We performed a comprehensive evaluation of ACR and GMA genotoxicity in Fisher 344 rats using repeated gavage administrations. Clastogenicity was measured by scoring micronucleated (MN) erythrocytes from peripheral blood, DNA damage in liver, bone marrow and kidneys was measured using the Comet assay, and gene mutation was measured using the red blood cell (RBC) and reticulocyte Pig-a assay. A limited histopathology evaluation was performed in order to determine levels of cytotoxicity. Doses of up to 20 mg/kg/day of ACR and up to 250 mg/kg/day of GMA were used. ACR treatment resulted in DNA damage in the liver, but not in the bone marrow. While ACR was not a clastogen, it was a weak (equivocal) mutagen in the cells of bone marrow. GMA caused DNA damage in the cells of bone marrow, liver and kidney, and induced MN reticulocytes and Pig-a mutant RBCs in a dose-dependent manner. Collectively, our data suggest that both compounds are in vivo genotoxins, but the genotoxicity of ACR is tissue specific.


Assuntos
Acrilamida/toxicidade , Ensaio Cometa , Compostos de Epóxi/toxicidade , Metacrilatos/toxicidade , Acrilamida/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Compostos de Epóxi/administração & dosagem , Masculino , Metacrilatos/administração & dosagem , Ratos
17.
Environ Mol Mutagen ; 57(2): 114-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26683280

RESUMO

Identification of mutations induced by xenotoxins is a common task in the field of genetic toxicology. Mutations are often detected by clonally expanding potential mutant cells and genotyping each viable clone by Sanger sequencing. Such a "clone-by-clone" approach requires significant time and effort, and sometimes is even impossible to implement. Alternative techniques for efficient mutation identification would greatly benefit both basic and regulatory genetic toxicology research. Here, we report the development of Mutation Analysis with Random DNA Identifiers (MARDI), a novel high-fidelity Next Generation Sequencing (NGS) approach that circumvents clonal expansion and directly catalogs mutations in pools of mutant cells. MARDI uses oligonucleotides carrying Random DNA Identifiers (RDIs) to tag progenitor DNA molecules before PCR amplification, enabling clustering of descendant DNA molecules and eliminating NGS- and PCR-induced sequencing artifacts. When applied to the Pig-a cDNA analysis of heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats, MARDI detected nearly all Pig-a mutations that were previously identified by conventional clone-by-clone analysis and discovered many additional ones consistent with DMBA exposure: mostly A to T transversions, with the mutated A located on the non-transcribed DNA strand.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Análise Mutacional de DNA/métodos , Mutação , Linfócitos T/efeitos dos fármacos , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígeno CD48 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , Reação em Cadeia da Polimerase/métodos , Ratos Endogâmicos F344
18.
Environ Mol Mutagen ; 56(8): 674-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26033714

RESUMO

A major question concerning the scientific and regulatory acceptance of the rodent red blood cell-based Pig-a gene mutation assay is the extent to which mutants identified by their phenotype in the assay are caused by mutations in the Pig-a gene. In this study, we identified T-lymphocytes deficient for the glycosylphosphatidylinositol-anchored surface marker, CD48, in control and 7,12-dimethylbenz[a]anthracene (DMBA)-treated rats using a flow cytometric assay and determined the spectra of mutations in the endogenous Pig-a gene in these cells. CD48-deficient T-cells were seeded by sorting at one cell per well into 96-well plates, expanded into clones, and exons of their genomic Pig-a were sequenced. The majority (78%) of CD48-deficient T-cell clones from DMBA-treated rats had mutations in the Pig-a gene. The spectrum of DMBA-induced Pig-a mutations was dominated by mutations at A:T, with the mutated A being on the nontranscribed strand and A → T transversion being the most frequent change. The spectrum of Pig-a mutations in DMBA-treated rats was different from the spectrum of Pig-a mutations in N-ethyl-N-nitrosourea (ENU)-treated rats, but similar to the spectrum of DMBA mutations for another endogenous X-linked gene, Hprt. Only 15% of CD48-deficient mutants from control animals contained Pig-a mutations; T-cell biology may be responsible for a relatively large fraction of false Pig-a mutant lymphocytes in control animals. Among the verified mutants from control rats, the most common were frameshifts and deletions. The differences in the spectra of spontaneous, DMBA-, and ENU-induced Pig-a mutations suggest that the flow cytometric Pig-a assay detects de novo mutation in the endogenous Pig-a gene.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Antígenos CD/metabolismo , Proteínas de Membrana/genética , Mutação , Linfócitos T/efeitos dos fármacos , Animais , Antígenos CD/genética , Antígeno CD48 , Citometria de Fluxo , Masculino , Proteínas de Membrana/metabolismo , Testes de Mutagenicidade , Mutagênicos/toxicidade , Ratos Endogâmicos F344 , Linfócitos T/metabolismo
19.
Mutagenesis ; 30(3): 315-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25820172

RESUMO

The Pig-a assay is used for monitoring somatic cell mutation in laboratory animals and humans. The assay detects haematopoietic cells deficient in glycosylphosphatidylinositol (GPI)-anchored protein surface markers using flow cytometry. However, given that synthesis of the protein markers (and the expression of their genes) is independent of the expression of the X-linked Pig-a gene and the function of its enzyme product, the deficiency of markers at the surface of the cells may be caused by a number of events (e.g. by mutation or epigenetic silencing in the marker gene itself or in any of about two dozen autosomal genes involved in the synthesis of GPI). Here we provide direct evidence that the deficiency of the GPI-anchored surface marker CD48 in rat T-cells is accompanied by mutation in the endogenous X-linked Pig-a gene. We treated male F344 rats with N-ethyl-N-nitrosourea (ENU), and established colonies from flow cytometry-identified and sorted CD48-deficient spleen T-lymphocytes. Molecular analysis confirmed that the expanded sorted cells have mutations in the Pig-a gene. The spectrum of Pig-a mutation in our model was consistent with the spectrum of ENU-induced mutation determined in other in vivo models, mostly base-pair substitutions at A:T with the mutated T on the non-transcribed strand of Pig-a genomic DNA. We also used next generation sequencing to derive a similar mutational spectrum from a pool of 64 clones developed from flow-sorted CD48-deficient lymphocytes. Our findings confirm that Pig-a assays detect what they are designed to detect-gene mutation in the Pig-a gene.


Assuntos
Proteínas de Membrana/genética , Linfócitos T/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Sequência de Bases , Antígeno CD48 , Células Cultivadas , Análise Mutacional de DNA , Etilnitrosoureia/farmacologia , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Separação Imunomagnética , Masculino , Mutagênese , Testes de Mutagenicidade , Mutagênicos/farmacologia , Mutação , Fenótipo , Ratos Endogâmicos F344
20.
Environ Mol Mutagen ; 56(4): 356-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25361439

RESUMO

Estragole, a naturally occurring constituent of various herbs and spices, is a rodent liver carcinogen which requires bio-activation. To further understand the mechanisms underlying its carcinogenicity, genotoxicity was assessed in F344 rats using the comet, micronucleus (MN), and DNA adduct assays together with histopathological analysis. Oxidative damage was measured using human 8-oxoguanine-DNA-N-glycosylase (hOGG1) and EndonucleaseIII (EndoIII)-modified comet assays. Results with estragole were compared with the structurally related genotoxic carcinogen, safrole. Groups of seven-week-old male F344 rats received corn oil or corn oil containing 300, 600, or 1,000 mg/kg bw estragole and 125, 250, or 450 mg/kg bw safrole by gavage at 0, 24, and 45 hr and terminated at 48 hr. Estragole-induced dose-dependent increases in DNA damage following EndoIII or hOGG1 digestion and without enzyme treatment in liver, the cancer target organ. No DNA damage was detected in stomach, the non-target tissue for cancer. No elevation of MN was observed in reticulocytes sampled from peripheral blood. Comet assays, both without digestion or with either EndoIII or hOGG1 digestion, also detected DNA damage in the liver of safrole-dosed rats. No DNA damage was detected in stomach, nor was MN elevated in peripheral blood following dosing with safrole suggesting that, as far both safrole and estragole, oxidative damage may contribute to genotoxicity. Taken together, these results implicate multiple mechanisms of estragole genotoxicity. DNA damage arises from chemical-specific interaction and is also mediated by oxidative species.


Assuntos
Anisóis/toxicidade , Testes de Mutagenicidade/métodos , Derivados de Alilbenzenos , Animais , Ensaio Cometa/métodos , Adutos de DNA , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Testes para Micronúcleos , Ratos Endogâmicos F344 , Safrol/toxicidade , Estômago/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...