Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3292, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632274

RESUMO

Cancers of Unknown Primary (CUP) remains a diagnostic and therapeutic challenge due to biological heterogeneity and poor responses to standard chemotherapy. Predicting tissue-of-origin (TOO) molecularly could help refine this diagnosis, with tissue acquisition barriers mitigated via liquid biopsies. However, TOO liquid biopsies are unexplored in CUP cohorts. Here we describe CUPiD, a machine learning classifier for accurate TOO predictions across 29 tumour classes using circulating cell-free DNA (cfDNA) methylation patterns. We tested CUPiD on 143 cfDNA samples from patients with 13 cancer types alongside 27 non-cancer controls, with overall sensitivity of 84.6% and TOO accuracy of 96.8%. In an additional cohort of 41 patients with CUP CUPiD predictions were made in 32/41 (78.0%) cases, with 88.5% of the predictions clinically consistent with a subsequent or suspected primary tumour diagnosis, when available (23/26 patients). Combining CUPiD with cfDNA mutation data demonstrated potential diagnosis re-classification and/or treatment change in this hard-to-treat cancer group.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Primárias Desconhecidas , Humanos , Ácidos Nucleicos Livres/genética , Neoplasias Primárias Desconhecidas/genética , Biomarcadores Tumorais/genética , Metilação de DNA , Biópsia Líquida
2.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405859

RESUMO

Molecular subtypes of Small Cell Lung Cancer (SCLC) have been described based on differential expression of transcription factors (TFs) ASCL1, NEUROD1, POU2F3 and immune-related genes. We previously reported an additional subtype based on expression of the neurogenic TF ATOH1 within our SCLC Circulating tumour cell-Derived eXplant (CDX) model biobank. Here we show that ATOH1 protein was detected in 7/81 preclinical models and 16/102 clinical samples of SCLC. In CDX models, ATOH1 directly regulated neurogenesis and differentiation programs consistent with roles in normal tissues. In ex vivo cultures of ATOH1-positive CDX, ATOH1 was required for cell survival. In vivo, ATOH1 depletion slowed tumour growth and suppressed liver metastasis. Our data validate ATOH1 as a bona fide oncogenic driver of SCLC with tumour cell survival and pro-metastatic functions. Further investigation to explore ATOH1 driven vulnerabilities for targeted treatment with predictive biomarkers is warranted.

3.
Clin Cancer Res ; 29(14): 2602-2611, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36799931

RESUMO

PURPOSE: A single maintenance course of a PARP inhibitor (PARPi) improves progression-free survival (PFS) in germline BRCA1/2-mutant high-grade serous ovarian cancer (gBRCAm-HGSOC). The feasibility of a second maintenance course of PARPi was unknown. PATIENTS AND METHODS: Phase II trial with two entry points (EP1, EP2). Patients were recruited prior to rechallenge platinum. Patients with relapsed, gBRCAm-HGSOC were enrolled at EP1 if they were PARPi-naïve. Patients enrolled at EP2 had received their first course of olaparib prior to trial entry. EP1 patients were retreated with olaparib after RECIST complete/partial response (CR/PR) to platinum. EP2 patients were retreated with olaparib ± cediranib after RECIST CR/PR/stable disease to platinum and according to the platinum-free interval. Co-primary outcomes were the proportion of patients who received a second course of olaparib and the proportion who received olaparib retreatment for ≥6 months. Functional homologous recombination deficiency (HRD), somatic copy-number alteration (SCNA), and BRCAm reversions were investigated in tumor and liquid biopsies. RESULTS: Twenty-seven patients were treated (EP1 = 17, EP2 = 10), and 19 were evaluable. Twelve patients (63%) received a second course of olaparib and 4 received olaparib retreatment for ≥6 months. Common grade ≥2 adverse events during olaparib retreatment were anemia, nausea, and fatigue. No cases of MDS/AML occurred. Mean duration of olaparib treatment and retreatment differed (12.1 months vs. 4.4 months; P < 0.001). Functional HRD and SCNA did not predict PFS. A BRCA2 reversion mutation was detected in a post-olaparib liquid biopsy. CONCLUSIONS: A second course of olaparib can be safely administered to women with gBRCAm-HGSOC but is only modestly efficacious. See related commentary by Gonzalez-Ochoa and Oza, p. 2563.


Assuntos
Antineoplásicos , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Antineoplásicos/uso terapêutico , Ftalazinas/efeitos adversos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade
4.
Nat Cancer ; 3(10): 1260-1270, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941262

RESUMO

Small cell lung cancer (SCLC) is characterized by morphologic, epigenetic and transcriptomic heterogeneity. Subtypes based upon predominant transcription factor expression have been defined that, in mouse models and cell lines, exhibit potential differential therapeutic vulnerabilities, with epigenetically distinct SCLC subtypes also described. The clinical relevance of these subtypes is unclear, due in part to challenges in obtaining tumor biopsies for reliable profiling. Here we describe a robust workflow for genome-wide DNA methylation profiling applied to both patient-derived models and to patients' circulating cell-free DNA (cfDNA). Tumor-specific methylation patterns were readily detected in cfDNA samples from patients with SCLC and were correlated with survival outcomes. cfDNA methylation also discriminated between the transcription factor SCLC subtypes, a precedent for a liquid biopsy cfDNA-methylation approach to molecularly subtype SCLC. Our data reveal the potential clinical utility of cfDNA methylation profiling as a universally applicable liquid biopsy approach for the sensitive detection, monitoring and molecular subtyping of patients with SCLC.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Camundongos , Ácidos Nucleicos Livres/genética , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Epigenoma/genética , Metilação de DNA/genética , Neoplasias Pulmonares/diagnóstico , Fatores de Transcrição/genética
5.
Nat Commun ; 12(1): 6652, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789728

RESUMO

Small cell lung cancer (SCLC) has a 5-year survival rate of <7%. Rapid emergence of acquired resistance to standard platinum-etoposide chemotherapy is common and improved therapies are required for this recalcitrant tumour. We exploit six paired pre-treatment and post-chemotherapy circulating tumour cell patient-derived explant (CDX) models from donors with extensive stage SCLC to investigate changes at disease progression after chemotherapy. Soluble guanylate cyclase (sGC) is recurrently upregulated in post-chemotherapy progression CDX models, which correlates with acquired chemoresistance. Expression and activation of sGC is regulated by Notch and nitric oxide (NO) signalling with downstream activation of protein kinase G. Genetic targeting of sGC or pharmacological inhibition of NO synthase re-sensitizes a chemoresistant CDX progression model in vivo, revealing this pathway as a mediator of chemoresistance and potential vulnerability of relapsed SCLC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Etoposídeo/uso terapêutico , Neoplasias Pulmonares/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Células Neoplásicas Circulantes/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Guanilil Ciclase Solúvel/genética
7.
Nat Cancer ; 1(4): 437-451, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121965

RESUMO

Although small cell lung cancer (SCLC) is treated as a homogeneous disease, biopsies and preclinical models reveal heterogeneity in transcriptomes and morphology. SCLC subtypes were recently defined by neuroendocrine transcription factor (NETF) expression. Circulating-tumor-cell-derived explant models (CDX) recapitulate donor patients' tumor morphology, diagnostic NE marker expression and chemotherapy responses. We describe a biobank of 38 CDX models, including six CDX pairs generated pretreatment and at disease progression revealing complex intra- and intertumoral heterogeneity. Transcriptomic analysis confirmed three of four previously described subtypes based on ASCL1, NEUROD1 and POU2F3 expression and identified a previously unreported subtype based on another NETF, ATOH1. We document evolution during disease progression exemplified by altered MYC and NOTCH gene expression, increased 'variant' cell morphology, and metastasis without strong evidence of epithelial to mesenchymal transition. This CDX biobank provides a research resource to facilitate SCLC personalized medicine.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Bancos de Espécimes Biológicos , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/genética
8.
J Med Chem ; 63(5): 2308-2324, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31430136

RESUMO

The lysyl oxidase (LOX) family of extracellular proteins plays a vital role in catalyzing the formation of cross-links in fibrillar elastin and collagens leading to extracellular matrix (ECM) stabilization. These enzymes have also been implicated in tumor progression and metastatic disease and have thus become an attractive therapeutic target for many types of invasive cancers. Following our recently published work on the discovery of aminomethylenethiophenes (AMTs) as potent, orally bioavailable LOX/LOXL2 inhibitors, we report herein the discovery of a series of dual LOX/LOXL2 inhibitors, as well as a subseries of LOXL2-selective inhibitors, bearing an aminomethylenethiazole (AMTz) scaffold. Incorporation of a thiazole core leads to improved potency toward LOXL2 inhibition via an irreversible binding mode of inhibition. SAR studies have enabled the discovery of a predictive 3DQSAR model. Lead AMTz inhibitors exhibit improved pharmacokinetic properties and excellent antitumor efficacy, with significantly reduced tumor growth in a spontaneous breast cancer genetically engineered mouse model.


Assuntos
Aminoácido Oxirredutases/antagonistas & inibidores , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Tiazóis/farmacologia , Aminação , Aminoácido Oxirredutases/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Ratos , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacocinética , Ácidos Sulfínicos/farmacologia , Ácidos Sulfínicos/uso terapêutico , Tiazóis/química , Tiazóis/farmacocinética , Tiazóis/uso terapêutico
9.
Nat Med ; 25(10): 1534-1539, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31591595

RESUMO

Approximately 50% of patients with early-stage non-small-cell lung cancer (NSCLC) who undergo surgery with curative intent will relapse within 5 years1,2. Detection of circulating tumor cells (CTCs) at the time of surgery may represent a tool to identify patients at higher risk of recurrence for whom more frequent monitoring is advised. Here we asked whether CellSearch-detected pulmonary venous CTCs (PV-CTCs) at surgical resection of early-stage NSCLC represent subclones responsible for subsequent disease relapse. PV-CTCs were detected in 48% of 100 patients enrolled into the TRACERx study3, were associated with lung-cancer-specific relapse and remained an independent predictor of relapse in multivariate analysis adjusted for tumor stage. In a case study, genomic profiling of single PV-CTCs collected at surgery revealed higher mutation overlap with metastasis detected 10 months later (91%) than with the primary tumor (79%), suggesting that early-disseminating PV-CTCs were responsible for disease relapse. Together, PV-CTC enumeration and genomic profiling highlight the potential of PV-CTCs as early predictors of NSCLC recurrence after surgery. However, the limited sensitivity of PV-CTCs in predicting relapse suggests that further studies using a larger, independent cohort are warranted to confirm and better define the potential clinical utility of PV-CTCs in early-stage NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Células Neoplásicas Circulantes/patologia , Veias Pulmonares/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Estadiamento de Neoplasias
10.
Bull Math Biol ; 80(11): 3002-3022, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30267355

RESUMO

Microtubules are filamentous tubular protein polymers which are essential for a range of cellular behaviour, and are generally straight over micron length scales. However, in some gliding assays, where microtubules move over a carpet of molecular motors, individual microtubules can also form tight arcs or rings, even in the absence of crosslinking proteins. Understanding this phenomenon may provide important explanations for similar highly curved microtubules which can be found in nerve cells undergoing neurodegeneration. We propose a model for gliding assays where the kinesins moving the microtubules over the surface induce ring formation through differential binding, substantiated by recent findings that a mutant version of the motor protein kinesin applied in solution is able to lock-in microtubule curvature. For certain parameter regimes, our model predicts that both straight and curved microtubules can exist simultaneously as stable steady states, as has been seen experimentally. Additionally, unsteady solutions are found, where a wave of differential binding propagates down the microtubule as it glides across the surface, which can lead to chaotic motion. Whilst this model explains two-dimensional microtubule behaviour in an experimental gliding assay, it has the potential to be adapted to explain pathological curling in nerve cells.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Neurológicos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Conceitos Matemáticos , Proteínas Motores Moleculares/metabolismo , Movimento , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Dinâmica não Linear , Ligação Proteica
11.
Plant J ; 92(6): 1076-1091, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29031031

RESUMO

In plants, normal anther and pollen development involves many important biological events and complex molecular regulatory coordination. Understanding gene regulatory relationships during male reproductive development is essential for fundamental biology and crop breeding. In this work, we developed a rice gene co-expression network for anther development (RiceAntherNet) that allows prediction of gene regulatory relationships during pollen development. RiceAntherNet was generated from 57 rice anther tissue microarrays across all developmental stages. The microarray datasets from nine rice male sterile mutants, including msp1-4, ostdl1a, gamyb-2, tip2, udt1-1, tdr, eat1-1, ptc1 and mads3-4, were used to explore and test the network. Among the changed genes, three clades showing differential expression patterns were constructed to identify genes associated with pollen formation. Many of these have known roles in pollen development, for example, seven genes in Clade 1 (OsABCG15, OsLAP5, OsLAP6, DPW, CYP703A3, OsNP1 and OsCP1) are involved in rice pollen wall formation. Furthermore, Clade 1 contained 12 genes whose predicted orthologs in Arabidopsis have been reported as key during pollen development and may play similar roles in rice. Genes in Clade 2 are expressed earlier than Clade 1 (anther stages 2-9), while genes in Clade 3 are expressed later (stages 10-12). RiceAntherNet serves as a valuable tool for identifying novel genes during plant anther and pollen development. A website is provided (https://www.cpib.ac.uk/anther/riceindex.html) to present the expression profiles for gene characterization. This will assist in determining the key relationships between genes, thus enabling characterization of critical genes associated with anther and pollen regulatory networks.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes , Oryza/genética , Análise por Conglomerados , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Reprodução , Genética Reversa
12.
Mol Biol Cell ; 28(2): 296-308, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27881663

RESUMO

Axons are cable-like neuronal processes wiring the nervous system. They contain parallel bundles of microtubules as structural backbones, surrounded by regularly spaced actin rings termed the periodic membrane skeleton (PMS). Despite being an evolutionarily conserved, ubiquitous, highly ordered feature of axons, the function of PMS is unknown. Here we studied PMS abundance, organization, and function, combining versatile Drosophila genetics with superresolution microscopy and various functional readouts. Analyses with 11 actin regulators and three actin-targeting drugs suggest that PMS contains short actin filaments that are depolymerization resistant and sensitive to spectrin, adducin, and nucleator deficiency, consistent with microscopy-derived models proposing PMS as specialized cortical actin. Upon actin removal, we observed gaps in microtubule bundles, reduced microtubule polymerization, and reduced axon numbers, suggesting a role of PMS in microtubule organization. These effects become strongly enhanced when carried out in neurons lacking the microtubule-stabilizing protein Short stop (Shot). Combining the aforementioned actin manipulations with Shot deficiency revealed a close correlation between PMS abundance and microtubule regulation, consistent with a model in which PMS-dependent microtubule polymerization contributes to their maintenance in axons. We discuss potential implications of this novel PMS function along axon shafts for axon maintenance and regeneration.


Assuntos
Actinas/metabolismo , Axônios/fisiologia , Microtúbulos/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/fisiologia , Animais , Axônios/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Tubulina (Proteína)/metabolismo
13.
Front Plant Sci ; 7: 1323, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27625677

RESUMO

Seed dormancy is a genetically controlled block preventing the germination of imbibed seeds in favorable conditions. It requires a period of dry storage (after-ripening) or certain environmental conditions to be overcome. Dormancy is an important seed trait, which is under selective pressure, to control the seasonal timing of seed germination. Dormant and non-dormant (after-ripened) seeds are characterized by large sets of differentially expressed genes. However, little information is available concerning the temporal and spatial transcriptional changes during early stages of rehydration in dormant and non-dormant seeds. We employed genome-wide transcriptome analysis on seeds of the model plant Arabidopsis thaliana to investigate transcriptional changes in dry seeds upon rehydration. We analyzed gene expression of dormant and after-ripened seeds of the Cvi accession over four time points and two seed compartments (the embryo and surrounding single cell layer endosperm), during the first 24 h after sowing. This work provides a global view of gene expression changes in dormant and non-dormant seeds with temporal and spatial detail, and these may be visualized via a web accessible tool (http://www.wageningenseedlab.nl/resources). A large proportion of transcripts change similarly in both dormant and non-dormant seeds upon rehydration, however, the first differences in transcript abundances become visible shortly after the initiation of imbibition, indicating that changes induced by after-ripening are detected and responded to rapidly upon rehydration. We identified several gene expression profiles which contribute to differential gene expression between dormant and non-dormant samples. Genes with enhanced expression in the endosperm of dormant seeds were overrepresented for stress-related Gene Ontology categories, suggesting a protective role for the endosperm against biotic and abiotic stress to support persistence of the dormant seed in its environment.

14.
Brain Res Bull ; 126(Pt 3): 226-237, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27530065

RESUMO

Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during development, plastic rearrangement, regeneration or degeneration depend on dynamic changes of these MT bundles. A key mechanism for implementing such changes is the coordinated polymerisation and depolymerisation at the plus ends of MTs within these bundles. To gain an understanding of how such regulation can be achieved at the cellular level, we provide here an integrated overview of the extensive knowledge we have about the molecular mechanisms regulating MT de/polymerisation. We first summarise insights gained from work in vitro, then describe the machinery which supplies the essential tubulin building blocks, the protein complexes associating with MT plus ends, and MT shaft-based mechanisms that influence plus end dynamics. We briefly summarise the contribution of MT plus end dynamics to important cellular functions in axons, and conclude by discussing the challenges and potential strategies of integrating the existing molecular knowledge into conceptual understanding at the level of axons.


Assuntos
Axônios/metabolismo , Microtúbulos/metabolismo , Animais , Humanos
15.
Plant Physiol ; 167(1): 200-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25429110

RESUMO

Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination.


Assuntos
Hidrolases de Éster Carboxílico/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Lepidium sativum/fisiologia , Proteínas de Plantas/fisiologia , Sementes/fisiologia , Hidrolases de Éster Carboxílico/biossíntese , Hidrolases de Éster Carboxílico/genética , Endosperma/enzimologia , Endosperma/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Hipocótilo/enzimologia , Hipocótilo/fisiologia , Lepidium sativum/enzimologia , Lepidium sativum/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Sementes/enzimologia
16.
Plant Cell ; 26(3): 862-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24632533

RESUMO

Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed an auxin transport model based on actual root cell geometries and carrier subcellular localizations. We tested model predictions using the DII-VENUS auxin sensor in conjunction with state-of-the-art segmentation tools. Our study revealed that auxin efflux carriers alone cannot create the pattern of auxin distribution at the root tip and that AUX1/LAX influx carriers are also required. We observed that AUX1 in lateral root cap (LRC) and elongating epidermal cells greatly enhance auxin's shootward flux, with this flux being predominantly through the LRC, entering the epidermal cells only as they enter the elongation zone. We conclude that the nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Frações Subcelulares/metabolismo
17.
Mol Cell ; 53(3): 369-79, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24462115

RESUMO

Nitric oxide (NO) is an important signaling compound in prokaryotes and eukaryotes. In plants, NO regulates critical developmental transitions and stress responses. Here, we identify a mechanism for NO sensing that coordinates responses throughout development based on targeted degradation of plant-specific transcriptional regulators, the group VII ethylene response factors (ERFs). We show that the N-end rule pathway of targeted proteolysis targets these proteins for destruction in the presence of NO, and we establish them as critical regulators of diverse NO-regulated processes, including seed germination, stomatal closure, and hypocotyl elongation. Furthermore, we define the molecular mechanism for NO control of germination and crosstalk with abscisic acid (ABA) signaling through ERF-regulated expression of ABSCISIC ACID INSENSITIVE5 (ABI5). Our work demonstrates how NO sensing is integrated across multiple physiological processes by direct modulation of transcription factor stability and identifies group VII ERFs as central hubs for the perception of gaseous signals in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/fisiologia , Óxido Nítrico/farmacologia , Oxigênio/farmacologia , Estômatos de Plantas/efeitos dos fármacos , Proteólise , Transdução de Sinais , Fatores de Transcrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...