Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 62(7): 727-32, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18935820

RESUMO

The rapid detection and quantification of saxitoxin (STX) is reported using surface-enhanced Raman spectroscopy (SERS) with a colloidal hydrosol of silver nanoparticles. Under the conditions of our experiments, the limit of detection (LD) for STX using SERS is 3 nM, with a limit of quantification (LQ) of 20 nM. It is shown that the SERS method is rapid, with spectra being collected in as little as 5 seconds total integration time for a 40 nM STX sample. In order to improve the signal-to-noise ratio, SERS spectra were generally collected with a total integration time of 1 minute (6 accumulations of 10 seconds each), with no need for extensive sample work-up or substrate preparation. Based on these results, the SERS technique shows great promise for the future detection and quantification of STX molecules in aqueous solutions.


Assuntos
Saxitoxina/química , Prata/química , Análise Espectral Raman/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Appl Opt ; 47(25): 4627-32, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18758534

RESUMO

Raman measurements of two common gases are made using a simple multipass capillary Raman cell (MCC) coupled to an unfiltered 18 around 1 fiber-optic Raman probe. The MCC, which is fabricated by chemical deposition of silver on the inner walls of a 2 mm inner diameter glass capillary tube, gives up to 20-fold signal enhancements for nonabsorbing gases. The device is relatively small and suitable for remote and in situ Raman measurements with optical fibers. The optical behavior of the MCC is similar to previously described liquid-core waveguides and hollow metal-coated waveguides used for laser transmission, but unlike the former devices, the MCC is generally applicable to a very wide range of nonabsorbing gases.

3.
Appl Spectrosc ; 62(3): 285-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18339235

RESUMO

A simple Raman multipass capillary cell (MCC) is described that gives 12- to 30-fold signal enhancements for non-absorbing gases. The cell is made by coating the inside of 2-mm inner diameter silica capillary tubes with silver. The device is very small and suitable for remote and in situ Raman measurements with optical fibers. Application of the MCC is similar to previously described liquid core waveguides but, unlike the latter devices, the MCC is generally more applicable to a wide range of non-absorbing gases.

4.
Appl Spectrosc ; 61(12): 1295-300, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18198020

RESUMO

Autoinducer (AI) molecules are used by quorum sensing (QS) bacteria to communicate information about their environment and are critical to their ability to coordinate certain physiological activities. Studying how these organisms react to environmental stresses could provide insight into methods to control these activities. To this end, we are investigating spectroscopic methods of analysis that allow in situ measurements of these AI molecules under different environmental conditions. We found that for one class of AIs, N-acyl-homoserine lactones (AHLs), surface-enhanced Raman spectroscopy (SERS) is a method capable of performing such measurements in situ. SERS spectra of seven different AHLs with acyl chain lengths from 4 to 12 carbons were collected for the first time using Ag colloidal nanoparticles synthesized via both citrate and borohydride reduction methods. Strong SERS spectra were obtained in as little as 10 seconds for 80 microM solutions of AI that exhibited the strongest SERS response, whereas 20 seconds was typical for most AI SERS spectra collected during this study. Although all spectra were similar, significant differences were detected in the SERS spectra of C4-AHL and 3-oxo-C6-AHL and more subtle differences were noted between all AHLs. Initial results indicate a detection limit of approximately 10(-6)M for C6-AHL, which is within the limits of biologically relevant concentrations of AI molecules (nM-microM). Based on these results, the SERS method shows promise for monitoring AI molecule concentrations in situ, within biofilms containing QS bacteria. This new capability offers the possibility to "listen in" on chemical communications between bacteria in their natural environment as that environment is stressed.


Assuntos
Acil-Butirolactonas/química , Bactérias/metabolismo , Percepção de Quorum , Análise Espectral Raman/métodos , Coloides/química , Estrutura Molecular , Prata/química
5.
Appl Spectrosc ; 60(4): 356-65, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16613630

RESUMO

Initial results demonstrating the ability to classify surface-enhanced Raman (SERS) spectra of chemical and biological warfare agent simulants are presented. The spectra of two endospores (B. subtilis and B. atrophaeus), two chemical agent simulants (dimethyl methylphosphonate (DMMP) and diethyl methylphosphonate (DEMP)), and two toxin simulants (ovalbumin and horseradish peroxidase) were studied on multiple substrates fabricated from colloidal gold adsorbed onto a silanized quartz surface. The use of principal component analysis (PCA) and hierarchical clustering were used to evaluate the efficacy of identifying potential threat agents from their spectra collected on a single substrate. The use of partial least squares-discriminate analysis (PLS-DA) and soft independent modeling of class analogies (SIMCA) on a compilation of data from separate substrates, fabricated under identical conditions, demonstrates both the feasibility and the limitations of this technique for the identification of known but previously unclassified spectra.


Assuntos
Guerra Biológica/classificação , Guerra Biológica/métodos , Interpretação Estatística de Dados , Coloide de Ouro/química , Tamanho da Partícula , Quartzo/química , Silanos/química , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...