Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 189(5): 829-41, 2010 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-20498017

RESUMO

An endoplasmic reticulum (ER) quality control system assists in efficient folding and disposal of misfolded proteins. N-linked glycans are critical in these events because their composition dictates interactions with molecular chaperones. UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) is a key quality control factor of the ER. It adds glucoses to N-linked glycans of nonglucosylated substrates that fail a quality control test, supporting additional rounds of chaperone binding and ER retention. How UGT1 functions in its native environment is poorly understood. The role of UGT1 in the maturation of glycoproteins at basal expression levels was analyzed. Prosaposin was identified as a prominent endogenous UGT1 substrate. A dramatic decrease in the secretion of prosaposin was observed in ugt1(-/-) cells with prosaposin localized to large juxtanuclear aggresome-like inclusions, which is indicative of its misfolding and the essential role that UGT1 plays in its proper maturation. A model is proposed that explains how UGT1 may aid in the folding of sequential domain-containing proteins such as prosaposin.


Assuntos
Glucosiltransferases/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional/fisiologia , Saposinas/metabolismo , Animais , Células CHO , Calnexina/metabolismo , Calreticulina/metabolismo , Domínio Catalítico/genética , Cricetinae , Cricetulus , Detergentes/química , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Glucosiltransferases/genética , Complexo de Golgi/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Mutação/fisiologia , Conformação Proteica , Saposinas/química , Saposinas/genética , Solubilidade , Vimentina/metabolismo
2.
Biochim Biophys Acta ; 1803(6): 684-93, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19891995

RESUMO

Eukaryotic secretory pathway cargo fold to their native structures within the confines of the endoplasmic reticulum (ER). To ensure a high degree of folding fidelity, a multitude of covalent and noncovalent constraints are imparted upon nascent proteins. These constraints come in the form of topological restrictions or membrane tethers, covalent modifications, and interactions with a series of molecular chaperones. N-linked glycosylation provides inherent benefits to proper folding and creates a platform for interactions with specific chaperones and Cys modifying enzymes. Recent insights into this timeline of protein maturation have revealed mechanisms for protein glycosylation and iterative targeting of incomplete folding intermediates, which provides nurturing interactions with molecular chaperones that assist in the efficient maturation of proteins in the eukaryotic secretory pathway.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas/química , Lectinas/metabolismo , Animais , Cisteína/química , Glicosilação , Humanos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Conformação Molecular , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Transporte Proteico , Proteínas/química , Transdução de Sinais
3.
J Biol Chem ; 283(49): 33826-37, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18849342

RESUMO

The earliest steps in nascent protein maturation greatly affect its overall efficiency. Constraints placed on maturing proteins at these early stages limit available conformations and help to direct the native maturation process. For type II membrane proteins, these cotranslational constraints include N- and C-terminal membrane tethering, chaperone binding, and disulfide bond formation. The cotranslational maturation process for the type II membrane glycoprotein influenza neuraminidase (NA) was investigated to provide a deeper understanding of these initial endoplasmic reticulum events. The type II orientation provides experimental advantages to monitor the first maturation steps. Calnexin was shown to cotranslationally interact with NA prior to calreticulin. These interactions were required for the efficient maturation of NA as it prematurely formed intramolecular disulfides and aggregated when calnexin and calreticulin interactions were abolished. Lectin chaperone binding slowed the NA maturation process, increasing its fidelity. Carbohydrates were required for NA maturation in a regio-specific manner. A subset of NA formed intermolecular disulfides and oligomerized cotranslationally. This fraction increased in the absence of calnexin and calreticulin binding. NA dimerization also occurred for an NA mutant lacking the critical large loop disulfide bond, indicating that dimerization did not require proper NA oxidation. The strict evaluation of proper maturation carried out by the quality control machinery was instilled at the tetramerization step. This study illustrates the type II membrane protein maturation process and shows how important cotranslational events contribute to the proper cellular maturation of glycoproteins.


Assuntos
Glicoproteínas de Membrana/química , Neuraminidase/fisiologia , Orthomyxoviridae/enzimologia , Orthomyxoviridae/metabolismo , Animais , Células CHO , Calnexina/química , Carboidratos/química , Cricetinae , Cricetulus , Cães , Glicoproteínas/química , Lectinas/química , Chaperonas Moleculares/química , Neuraminidase/química , Ligação Proteica , Estrutura Terciária de Proteína
4.
J Cell Biol ; 181(2): 309-20, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18426978

RESUMO

The endoplasmic reticulum (ER) protein GT1 (UDP-glucose: glycoprotein glucosyltransferase) is the central enzyme that modifies N-linked carbohydrates based upon the properties of the polypeptide backbone of the maturing substrate. GT1 adds glucose residues to nonglucosylated proteins that fail the quality control test, supporting ER retention through persistent binding to the lectin chaperones calnexin and calreticulin. How GT1 functions in its native environment on a maturing substrate is poorly understood. We analyzed the reglucosylation of a maturing model glycoprotein, influenza hemagglutinin (HA), in the intact mammalian ER. GT1 reglucosylated N-linked glycans in the slow-folding stem domain of HA once the nascent chain was released from the ribosome. Maturation mutants that disrupted the oxidation or oligomerization of HA also supported region-specific reglucosylation by GT1. Therefore, GT1 acts as an ER quality control sensor by posttranslationally reglucosylating glycans on slow-folding or nonnative domains to recruit chaperones specifically to critical aberrant regions.


Assuntos
Glucose/metabolismo , Glicoproteínas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Hemaglutininas/metabolismo , Cinética , Plasmídeos , Polissacarídeos/metabolismo , Transcrição Gênica , Transfecção
5.
Mol Cell ; 23(6): 773-5, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16973428

RESUMO

Recently, a new layer of the unfolded protein response was discovered that supports the cotranslocational degradation of nascent chains stalled in endoplasmic reticulum translocons (Oyadomari et al., 2006).


Assuntos
Retículo Endoplasmático/metabolismo , Modelos Biológicos , Biossíntese de Proteínas/fisiologia , Proteínas/metabolismo , Animais , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Dobramento de Proteína , Transdução de Sinais
6.
Mol Cell ; 19(6): 717-9, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16168366

RESUMO

In this issue of Molecular Cell, Bhamidipati et al., (2005) and Kim et al., (2005), and Szathmary et al. (2005), and demonstrate that Yos9p selectively binds to aberrant glycoproteins in the endoplasmic reticulum (ER) and targets them for destruction through the ER-associated protein degradation pathway.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Glicoproteínas/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica
7.
J Biol Chem ; 279(17): 17875-87, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-14960589

RESUMO

We have generated a panel of potent, selective monoclonal antibodies that bind human and mouse alpha(v)beta(6) integrin with high affinity (up to 15 pm). A subset of these antibodies blocked the binding of alpha(v)beta(6) to the transforming growth factor-beta1 latency-associated peptide with IC(50) values as low as 18 pm, and prevented the subsequent alpha(v)beta(6)-mediated activation of transforming growth factor-beta1. The antibodies also inhibited alpha(v)beta(6) binding to fibronectin. The blocking antibodies form two biochemical classes. One class, exemplified by the ligand-mimetic antibody 6.8G6, bound to the integrin in a divalent cation-dependent manner, contained an RGD motif or a related sequence in CDR3 of the heavy chain, was blocked by RGD-containing peptides, and was internalized by alpha(v)beta(6)-expressing cells. Despite containing an RGD sequence, 6.8G6 was specific for alpha(v)beta(6) and showed no cross-reactivity with the RGD-binding integrins alpha(v)beta(3), alpha(v)beta(8),or alpha(IIb)beta(3). The nonligand-mimetic blocking antibodies, exemplified by 6.3G9, were cation-independent, were not blocked by RGD-containing peptides, were not internalized, and did not contain RGD or related sequences. These two classes of antibody were unable to bind simultaneously to alpha(v)beta(6), suggesting that they may bind overlapping epitopes. The "ligand-mimetic" antibodies are the first to be described for alpha(v)beta(6) and resemble those described for alpha(IIb)beta(3). We also report for the first time the relative abilities of divalent cations to promote alpha(v)beta(6) binding to latency-associated peptide and to the ligand-mimetic antibodies. These antibodies should provide valuable tools to study the ligand-receptor interactions of alpha(v)beta(6) as well as the role of alpha(v)beta(6) in vivo.


Assuntos
Antígenos de Neoplasias/química , Integrinas/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Antígenos de Neoplasias/imunologia , Ligação Competitiva , Cátions , Adesão Celular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Epitopos/química , Fibronectinas/química , Fibronectinas/metabolismo , Citometria de Fluxo , Humanos , Imunoensaio , Concentração Inibidora 50 , Integrinas/imunologia , Cinética , Ligantes , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Células NIH 3T3 , Oligopeptídeos/química , Peptídeos/química , Agregação Plaquetária , Ligação Proteica , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA