Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Negl Trop Dis ; 16(1): e0010151, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35073344

RESUMO

Schistosoma haematobium is the leading cause of urogenital schistosomiasis and it is recognised as a class 1 carcinogen due to the robust association of infection with bladder cancer. In schistosomes, tetraspanins (TSPs) are abundantly present in different parasite proteomes and could be potential diagnostic candidates due to their accessibility to the host immune system. The large extracellular loops of six TSPs from the secretome (including the soluble excretory/secretory products, tegument and extracellular vesicles) of S. haematobium (Sh-TSP-2, Sh-TSP-4, Sh-TSP-5, Sh-TSP-6, Sh-TSP-18 and Sh-TSP-23) were expressed in a bacterial expression system and polyclonal antibodies were raised to the recombinant proteins to confirm the anatomical sites of expression within the parasite. Sh-TSP-2, and Sh-TSP-18 were identified on the tegument, whereas Sh-TSP-4, Sh-TSP-5, Sh-TSP-6 and Sh-TSP-23 were identified both on the tegument and internal tissues of adult parasites. The mRNAs encoding these TSPs were differentially expressed throughout all schistosome developmental stages tested. The potential diagnostic value of three of these Sh-TSPs was assessed using the urine of individuals (stratified by infection intensity) from an endemic area of Zimbabwe. The three Sh-TSPs were the targets of urine IgG responses in all cohorts, including individuals with very low levels of infection (those positive for circulating anodic antigen but negative for eggs by microscopy). This study provides new antigen candidates to immunologically diagnose S. haematobium infection, and the work presented here provides compelling evidence for the use of a biomarker signature to enhance the diagnostic capability of these tetraspanins.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia , Proteínas de Helminto/imunologia , Esquistossomose Urinária/diagnóstico , Tetraspaninas/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/parasitologia , Óvulo , Schistosoma haematobium/imunologia , Schistosoma haematobium/metabolismo , Bexiga Urinária/parasitologia , Bexiga Urinária/patologia , Urina/parasitologia
2.
Lancet Infect Dis ; 21(12): 1725-1736, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34419209

RESUMO

BACKGROUND: Control of human hookworm infection would be greatly aided by the development of an effective vaccine. We aimed to develop a live attenuated human hookworm vaccine. METHODS: This was a two-part clinical trial done at Q-Pharm in Brisbane (QLD, Australia) using a live ultraviolet C (UVC)-attenuated Necator americanus larvae vaccine. Part one was an open-label, dose-finding study using 50 L3 larvae suspended in water to a volume of 200 µL, attenuated with UVC exposure of 700 µJ (L3-700) or 1000 µJ (L3-1000). Part two was a randomised, double-blind, placebo-controlled, challenge study, in which participants were randomly assigned 2:1 to the vaccine group or placebo group. Healthy hookworm-naive adults aged 18-65 years with body-mass index 18-35 kg/m2 received two doses of either placebo (Tabasco sauce) or vaccine (50 L3-700) on day 1 and day 42, followed by challenge with 30 unattenuated L3 larvae to both groups. All participants received a single oral dose of 400 mg albendazole 4 weeks after each inoculation and a 3-day course (400 mg orally daily) initiated on day 161 after the challenge phase, to eliminate any remaining infection. The primary outcome of part 1 was the level of larval attenuation the resulted in a grade 2 or 3 dermal adverse event. The primary outcome of part 2 was safety and tolerability, assessed by frequency and severity of adverse events in all randomly assigned participants. Prespecified exploratory outcomes in the challenge study were faecal N americanus DNA concentration, the number of N americanus larvae recovered per g of faeces cultured, hookworm antigen-specific serum IgG antibody responses, and hookworm antigen-specific peripheral blood cytokine responses. The trial is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12617001007325). FINDINGS: Between Sept 19, 2017, and Oct 24, 2018, seven participants were enrolled into three cohorts in part one (two participants in cohort 1, who received L3-700; two participants in cohort 2, who received L3-700; and three participants in cohort 3, who received L3-1000) and a further 15 were enrolled into part two. There were no serious adverse events in part one or part two. In part one, a greater number of skin penetration sites were observed after administration of L3-700 than L3-1000 (mean 15·75 [95% CI 11·18 to 20·32] with L3-700 vs 4·33 [-1·40 to 10·07] with L3-1000). Similarly, greater erythema (median 225 mm2 [IQR 150 to 325] vs 25 mm2 [12·5 to 80]) and a longer duration of the dermal reaction (median 8·0 days [IQR 3·5 to 11·5] vs 2·0 days [2·0 to 4·5]) were observed after L3-700 than L3-1000. The mean number of adverse events per participant did not differ between the groups (3·25 [95% CI 1·48 to 5·02] vs 3·00 [1·04 to 4·96]). Thus, L3-700 was used for vaccination in part two. In part two, ten participants were randomly assigned to receive L3-700 and five to placebo. Significantly more adverse events occurred after vaccination with attenuated larvae than with placebo (incident rate ratio [IRR] 2·13 [95% CI 2·09 to 5·51]; p=0·0030). There was no difference between groups in the frequency of adverse events after challenge (IRR 1·25 [0·78 to 2·01]; p=0·36). Most adverse events were mild in severity, with only one severe adverse event reported (erythematous and indurated pruritic rash >100 mm in a vaccine group participant after challenge). The eosinophil count increased in all participants after challenge, with a significantly greater increase among vaccinated participants than placebo participants (1·55 × 109 cells per L [IQR 0·92 to 1·81] in the vaccine group vs 0·49 × 109 cells per L [0·43 to 0·63] in the placebo group; p=0·014). Vaccinated participants had an IgG response to larval extract after challenge that was higher than that in placebo participants (increase in IgG titre 0·22 [IQR 0·10 to 0·41] vs 0·03 [-0·40 to 0·06]; p=0·020). Significantly fewer larvae per g of faeces were recovered in the vaccine group than in the placebo group after challenge (median larvae per g 0·8 [IQR 0·00 to 3·91] vs 10·2 [5·1 to 18·1]; p=0·014). The concentration of N americanus DNA in faeces was not significantly different between the vaccinated group and the placebo group (log10 DNA intensity 4·28 [95% CI 3·92 to 4·63] vs 4·88 [4·31 to 5·46]; p=0·14). Peripheral blood mononuclear cells from vaccinated participants exhibited significantly greater cytokine production at day 112 than placebo participants for IFNγ, TNFα, IL-2, IL-4, and IL-5 (p<0·05), but not IL-10. INTERPRETATION: Vaccination with UVC-attenuated N americanus larvae is well tolerated, induces humoral and cellular responses to hookworm antigens, and reduces larval output after challenge with unattenuated larvae. Larger studies are required to confirm protective efficacy. FUNDING: National Health and Medical Research Council of Australia.


Assuntos
Necatoríase/imunologia , Necatoríase/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Adulto , Animais , Anticorpos Anti-Helmínticos/imunologia , Austrália , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Necator americanus , Adulto Jovem
3.
Front Immunol ; 12: 663041, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113343

RESUMO

Despite the enormous morbidity attributed to schistosomiasis, there is still no vaccine to combat the disease for the hundreds of millions of infected people. The anthelmintic drug, praziquantel, is the mainstay treatment option, although its molecular mechanism of action remains poorly defined. Praziquantel treatment damages the outermost surface of the parasite, the tegument, liberating surface antigens from dying worms that invoke a robust immune response which in some subjects results in immunologic resistance to reinfection. Herein we term this phenomenon Drug-Induced Vaccination (DIV). To identify the antigenic targets of DIV antibodies in urogenital schistosomiasis, we constructed a recombinant proteome array consisting of approximately 1,000 proteins informed by various secretome datasets including validated proteomes and bioinformatic predictions. Arrays were screened with sera from human subjects treated with praziquantel and shown 18 months later to be either reinfected (chronically infected subjects, CI) or resistant to reinfection (DIV). IgG responses to numerous antigens were significantly elevated in DIV compared to CI subjects, and indeed IgG responses to some antigens were completely undetectable in CI subjects but robustly recognized by DIV subjects. One antigen in particular, a cystatin cysteine protease inhibitor stood out as a unique target of DIV IgG, so recombinant cystatin was produced, and its vaccine efficacy assessed in a heterologous Schistosoma mansoni mouse challenge model. While there was no significant impact of vaccination with adjuvanted cystatin on adult worm numbers, highly significant reductions in liver egg burdens (45-55%, P<0.0001) and intestinal egg burdens (50-54%, P<0.0003) were achieved in mice vaccinated with cystatin in two independent trials. This study has revealed numerous antigens that are targets of DIV antibodies in urogenital schistosomiasis and offer promise as subunit vaccine targets for a drug-linked vaccination approach to controlling schistosomiasis.


Assuntos
Antígenos de Helmintos/imunologia , Mapeamento de Epitopos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Praziquantel/farmacologia , Schistosoma haematobium/imunologia , Esquistossomose Urinária/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Biologia Computacional/métodos , Modelos Animais de Doenças , Mapeamento de Epitopos/métodos , Proteínas de Helminto/imunologia , Humanos , Imunização , Imunoglobulina G/imunologia , Camundongos , Carga Parasitária , Proteômica/métodos , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/imunologia , Esquistossomose Urinária/parasitologia , Esquistossomose Urinária/prevenção & controle , Vacinação
4.
Lancet Microbe ; 2(11): e617-e626, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34977830

RESUMO

BACKGROUND: Sensitive diagnostics are needed for effective management and surveillance of schistosomiasis so that current transmission interruption goals set by WHO can be achieved. We aimed to screen the Schistosoma haematobium secretome to find antibody biomarkers of schistosome infection, validate their diagnostic performance in samples from endemic populations, and evaluate their utility as point of care immunochromatographic tests (POC-ICTs) to diagnose urogenital schistosomiasis in the field. METHODS: We did a biomarker identification study, in which we constructed a proteome array containing 992 validated and predicted proteins from S haematobium and screened it with serum and urine antibodies from endemic populations in Gabon, Tanzania, and Zimbabwe. Arrayed antigens that were IgG-reactive and a select group of antigens from the worm extracellular vesicle proteome, predicted to be diagnostically informative, were then evaluated by ELISA using the same samples used to probe arrays, and samples from individuals residing in a low-endemicity setting (ie, Pemba and Unguja islands, Zanzibar, Tanzania). The two most sensitive and specific antigens were incorporated into POC-ICTs to assess their ability to diagnose S haematobium infection from serum in a field-deployable format. FINDINGS: From array probing, in individuals who were infected, 208 antigens were the targets of significantly elevated IgG responses in serum and 45 antigens were the targets of significantly elevated IgG responses in urine. Of the five proteins that were validated by ELISA, Sh-TSP-2 (area under the curve [AUC]serum=0·98 [95% CI 0·95-1·00]; AUCurine=0·96 [0·93-0·99]), and MS3_01370 (AUCserum=0·93 [0·89-0·97]; AUCurine=0·81 [0·72-0·89]) displayed the highest overall diagnostic performance in each biofluid and exceeded that of S haematobium-soluble egg antigen in urine (AUC=0·79 [0·69-0·90]). When incorporated into separate POC-ICTs, Sh-TSP-2 showed absolute specificity and a sensitivity of 75% and MS3_01370 showed absolute specificity and a sensitivity of 89%. INTERPRETATION: We identified numerous biomarkers of urogenital schistosomiasis that could form the basis of novel antibody diagnostics for this disease. Two of these antigens, Sh-TSP-2 and MS3_01370, could be used as sensitive, specific, and field-deployable diagnostics to support schistosomiasis control and elimination initiatives, with particular focus on post-elimination surveillance. FUNDING: Australian Trade and Investment Commission and Merck Global Health Institute.


Assuntos
Esquistossomose Urinária , Animais , Austrália , Biomarcadores , Feminino , Humanos , Imunoglobulina G , Masculino , Proteoma , Schistosoma haematobium , Esquistossomose Urinária/diagnóstico
5.
Vaccines (Basel) ; 8(3)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722279

RESUMO

Helminth parasites release extracellular vesicles which interact with the surrounding host tissues, mediating host-parasite communication and other fundamental processes of parasitism. As such, vesicle proteins present attractive targets for the development of novel intervention strategies to control these parasites and the diseases they cause. Herein, we describe the first proteomic analysis by LC-MS/MS of two types of extracellular vesicles (exosome-like, 120 k pellet vesicles and microvesicle-like, 15 k pellet vesicles) from adult Schistosoma haematobium worms. A total of 57 and 330 proteins were identified in the 120 k pellet vesicles and larger 15 k pellet vesicles, respectively, and some of the most abundant molecules included homologues of known helminth vaccine and diagnostic candidates such as Sm-TSP2, Sm23, glutathione S-transferase, saponins and aminopeptidases. Tetraspanins were highly represented in the analysis and found in both vesicle types. Vaccination of mice with recombinant versions of three of these tetraspanins induced protection in a heterologous challenge (S. mansoni) model of infection, resulting in significant reductions (averaged across two independent trials) in liver (47%, 38% and 41%) and intestinal (47%, 45% and 41%) egg burdens. These findings offer insight into the mechanisms by which anti-tetraspanin antibodies confer protection and highlight the potential that extracellular vesicle surface proteins offer as anti-helminth vaccines.

6.
Int J Parasitol ; 50(9): 685-696, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32598872

RESUMO

The ability of the parasitic blood fluke Schistosoma mansoni and other parasitic helminths to manipulate host biology is well recognised, but the mechanisms that underpin these phenomena are not well understood. An emerging paradigm is that helminths transfer their biological cargo to host cells by secretion of extracellular vesicles (EVs). Herein, we show that two populations of S. mansoni secreted EVs - exosome-like vesicles (ELVs) and microvesicles (MVs) - are actively internalised in two distinct human cell lines that reflect the resident cell types encountered by the parasite in vivo: human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes. RNA-sequencing of HUVECs co-cultured with S. mansoni ELVs compared with untreated HUVECs revealed differential expression of genes associated with intravascular parasitism, including vascular endothelial contraction, coagulation, arachidonic acid metabolism and immune cell trafficking and signalling. Finally, we show that antibodies raised against recombinant tetraspanin (TSP) proteins from the surface of S. mansoni EVs significantly blocked EV uptake by both HUVECs and THP-1 monocytes whereas pre-immunisation antibodies did not. To our knowledge, this is the first evidence demonstrating the internalisation of secreted EVs from any helminth into vascular endothelial cells, providing novel insight into the potential mechanisms underlying host-schistosome interactions. The ability of anti-TSP antibodies to block vesicle uptake by host target cells further supports the potential of TSPs as promising antigens for an anti-fluke vaccine. It also suggests a potential mechanism whereby the current candidate human schistosomiasis vaccine, Sm-TSP-2, exerts its protective effect in animal models.


Assuntos
Vesículas Extracelulares/imunologia , Expressão Gênica/imunologia , Proteínas de Helminto/imunologia , Proteoma/imunologia , Schistosoma mansoni , Esquistossomose mansoni/imunologia , Animais , Interações Hospedeiro-Parasita/imunologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Schistosoma mansoni/imunologia , Schistosoma mansoni/metabolismo , Células THP-1
7.
PLoS Negl Trop Dis ; 14(5): e0008237, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453752

RESUMO

The human hookworm Necator americanus infects more than 400 million people worldwide, contributing substantially to the poverty in these regions. Adult stage N. americanus live in the small intestine of the human host where they inject excretory/secretory (ES) products into the mucosa. ES products have been characterized at the proteome level for a number of animal hookworm species, but until now, the difficulty in obtaining sufficient live N. americanus has been an obstacle in characterizing the secretome of this important human pathogen. Herein we describe the ES proteome of N. americanus and utilize this information along with RNA Seq data to conduct the first proteogenomic analysis of a parasitic helminth, significantly improving the available genome and thereby generating a robust description of the parasite secretome. The genome annotation resulted in a revised prediction of 3,425 fewer genes than initially reported, accompanied by a significant increase in the number of exons and introns, total gene length and the percentage of the genome covered by genes. Almost 200 ES proteins were identified by LC-MS/MS with SCP/TAPS proteins, 'hypothetical' proteins and proteases among the most abundant families. These proteins were compared to commonly used model species of human parasitic infections, including Ancylostoma caninum, Nippostrongylus brasiliensis and Heligmosomoides polygyrus. SCP/TAPS proteins are immunogenic in nematode infections, so we expressed four of those identified in this study in recombinant form and showed that they are all recognized to varying degrees by serum antibodies from hookworm-infected subjects from a disease-endemic area of Brazil. Our findings provide valuable information on important families of proteins with both known and unknown functions that could be instrumental in host-parasite interactions, including protein families that might be key for parasite survival in the onslaught of robust immune responses, as well as vaccine and diagnostic targets.


Assuntos
Necator americanus/metabolismo , Proteoma , Animais , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma Helmíntico , Proteínas de Helminto , Necator americanus/genética , Filogenia
8.
Methods Mol Biol ; 2151: 85-92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32451998

RESUMO

The tegument (outer surface) of Schistosoma mansoni and other trematodes is in intimate contact with the host and plays an important role in host-parasite interactions. It is a complex structure that contains hundreds of proteins implicated in a variety of functions, although, so far, only a few proteins have been well characterized. Indeed, a few of these proteins have been shown to be effective vaccine and diagnostic candidates against S. mansoni and other schistosomes, and so the proteomic characterization of tegumental molecules could open new avenues for the development of novel control and surveillance strategies to combat schistosomiasis. Here, we describe the step by step isolation of tegumental proteins from the different tegument compartments using a biotinylation approach, as well as the materials and reagents needed.


Assuntos
Proteínas de Helminto/metabolismo , Proteômica/métodos , Schistosoma mansoni/anatomia & histologia , Schistosoma mansoni/metabolismo , Animais , Biotinilação , Cromatografia Líquida , Coloração e Rotulagem , Espectrometria de Massas em Tandem
9.
Vaccines (Basel) ; 8(2)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260125

RESUMO

Schistosomiasis is a neglected tropical disease caused by parasitic blood flukes of the genus Schistosoma, which kills 300,000 people every year in developing countries, and there is no vaccine. Recently, we have shown that cholinesterases (ChEs)-enzymes that regulate neurotransmission-from Schistosoma mansoni are expressed on the outer tegument surface and present in the excretory/secretory products of larval schistosomula and adult worms, and are essential for parasite survival in the definitive host, highlighting their utility as potential schistosomiasis vaccine targets. When treated in vitro with anti-schistosome cholinesterase (SmChE) IgG, both schistosomula and adult worms displayed significantly decreased ChE activity, which eventually resulted in parasite death. Vaccination with individual SmChEs, or a combination of all three SmChEs, significantly reduced worm burdens in two independent trials compared to controls. Average adult worm numbers and liver egg burdens were significantly decreased for all vaccinated mice across both trials, with values of 29-39% and 13-46%, respectively, except for those vaccinated with SmAChE1 in trial 1. Egg viability, as determined by egg hatching from liver homogenates, was significantly reduced in the groups vaccinated with the SmChE cocktail (40%) and SmAChE2 (46%). Furthermore, surviving worms from each vaccinated group were significantly stunted and depleted of glycogen stores, compared to controls. These results suggest that SmChEs could be incorporated into a vaccine against schistosomiasis to reduce the pathology and transmission of this debilitating disease.

10.
Mol Biochem Parasitol ; 236: 111264, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014446

RESUMO

Helminth parasites secrete extracellular vesicles (EVs) into their environment that have potential roles in host-parasite communication, and thus represent potentially useful targets for novel control strategies. Here, we carried out a comprehensive proteomic analysis of two different populations of EVs - 15k pellet and 120k pellet EVs - from Schistosoma mansoni adult worms. We characterised the proteins present in the membranes of the EVs (including external trypsin-liberated peptides, integral membrane proteins (IMPs) and peripheral membrane proteins (PMPs)), as well as cargo proteins, using LC-MS/MS. A total of 286 and 716 proteins were identified in 15k and 120k pellets, respectively. Some of the most abundant proteins identified from both 15k and 120k pellets include known vaccine candidates such as Sm-TSP-2, saponin B domain-containing proteins, calpain glutathione-S-transferase, Sm29 and cathepsin domain-containing proteins. Other abundant proteins that have not been tested as vaccines include DM9 domain-containing protein, 13 kDa tegumental antigen and histone H4-like protein. Sm23, a member of the tetraspanin family with known vaccine efficacy, was identified in the cargo and IMP compartments of only 15k pellet vesicles. Moreover, a collection of proteins with known or potential relevance in host-parasite communication including proteases, antioxidants and EV biogenesis/trafficking of both vesicle types were identified. Our results provide the first report of a comprehensive compartmental proteomic analysis of adult S. mansoni-derived EVs. Future research should investigate recombinant forms of these proteins as vaccine and serodiagnostic antigens as well as the roles of EV proteins in host-parasite communication.


Assuntos
Vesículas Extracelulares , Schistosoma mansoni , Animais , Cromatografia Líquida , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Proteínas de Membrana/metabolismo , Camundongos , Proteômica/métodos , Schistosoma mansoni/química , Schistosoma mansoni/metabolismo , Espectrometria de Massas em Tandem
11.
PLoS Pathog ; 15(12): e1008213, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31809524

RESUMO

Cholinesterase (ChE) function in schistosomes is essential for orchestration of parasite neurotransmission but has been poorly defined with respect to the molecules responsible. Interrogation of the S. mansoni genome has revealed the presence of three ChE domain-containing genes (Smche)s, which we have shown to encode two functional acetylcholinesterases (AChE)s (Smache1 -smp_154600 and Smache2 -smp_136690) and a butyrylcholinesterase (BChE) (Smbche1 -smp_125350). Antibodies to recombinant forms of each SmChE localized the proteins to the tegument of adults and schistosomula and developmental expression profiling differed among the three molecules, suggestive of functions extending beyond traditional cholinergic signaling. For the first time in schistosomes, we identified ChE enzymatic activity in fluke excretory/secretory (ES) products and, using proteomic approaches, attributed this activity to the presence of SmAChE1 and SmBChE1. Parasite survival in vitro and in vivo was significantly impaired by silencing of each smche, either individually or in combination, attesting to the essential roles of these molecules. Lastly, in the first characterization study of a BChE from helminths, evidence is provided that SmBChE1 may act as a bio-scavenger of AChE inhibitors as the addition of recombinant SmBChE1 to parasite cultures mitigated the effect of the anti-schistosome AChE inhibitor 2,2- dichlorovinyl dimethyl phosphate-dichlorvos (DDVP), whereas smbche1-silenced parasites displayed increased sensitivity to DDVP.


Assuntos
Colinesterases/metabolismo , Schistosoma mansoni/enzimologia , Animais , Camundongos , Transdução de Sinais/fisiologia
12.
Adv Exp Med Biol ; 1154: 411-436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297769

RESUMO

Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.


Assuntos
Genoma Helmíntico , Genômica , Proteômica , Trematódeos , Infecções por Trematódeos , Animais , Genoma Helmíntico/genética , Genômica/tendências , Humanos , Parasitologia/tendências , Proteômica/tendências , Trematódeos/classificação , Trematódeos/genética , Infecções por Trematódeos/parasitologia
13.
PLoS Negl Trop Dis ; 13(5): e0007362, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31091291

RESUMO

BACKGROUND: Schistosomiasis is a neglected disease affecting hundreds of millions worldwide. Of the three main species affecting humans, Schistosoma haematobium is the most common, and is the leading cause of urogenital schistosomiasis. S. haematobium infection can cause different urogenital clinical complications, particularly in the bladder, and furthermore, this parasite has been strongly linked with squamous cell carcinoma. A comprehensive analysis of the molecular composition of its different proteomes will contribute to developing new tools against this devastating disease. METHODS AND FINDINGS: By combining a comprehensive protein fractionation approach consisting of OFFGEL electrophoresis with high-throughput mass spectrometry, we have performed the first in-depth characterisation of the different discrete proteomes of S. haematobium that are predicted to interact with human host tissues, including the secreted and tegumental proteomes of adult flukes and secreted and soluble egg proteomes. A total of 662, 239, 210 and 138 proteins were found in the adult tegument, adult secreted, soluble egg and secreted egg proteomes, respectively. In addition, we probed these distinct proteomes with urine to assess urinary antibody responses from naturally infected human subjects with different infection intensities, and identified adult fluke secreted and tegument extracts as being the best predictors of infection. CONCLUSION: We provide a comprehensive dataset of proteins from the adult and egg stages of S. haematobium and highlight their utility as diagnostic markers of infection intensity. Protein composition was markedly different between the different extracts, highlighting the distinct subsets of proteins that different development stages present in their different niches. Furthermore, we have identified adult fluke ES and tegument extracts as best predictors of infection using urine antibodies of naturally infected people. This study provides the first steps towards the development of novel tools to control this important neglected tropical disease.


Assuntos
Proteínas de Helminto/metabolismo , Proteoma/metabolismo , Schistosoma haematobium/metabolismo , Esquistossomose Urinária/parasitologia , Animais , Feminino , Proteínas de Helminto/química , Proteínas de Helminto/genética , Humanos , Masculino , Proteoma/química , Proteoma/genética , Proteômica , Schistosoma haematobium/química , Schistosoma haematobium/classificação , Schistosoma haematobium/genética
14.
Elife ; 72018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29557781

RESUMO

Schistosomes infect more than 200 million people. These parasitic flatworms rely on a syncytial outer coat called the tegument to survive within the vasculature of their host. Although the tegument is pivotal for their survival, little is known about maintenance of this tissue during the decades schistosomes survive in the bloodstream. Here, we demonstrate that the tegument relies on stem cells (neoblasts) to specify fusogenic progenitors that replace tegumental cells lost to turnover. Molecular characterization of neoblasts and tegumental progenitors led to the discovery of two flatworm-specific zinc finger proteins that are essential for tegumental cell specification. These proteins are homologous to a protein essential for neoblast-driven epidermal maintenance in free-living flatworms. Therefore, we speculate that related parasites (i.e., tapeworms and flukes) employ similar strategies to control tegumental maintenance. Since parasitic flatworms infect every vertebrate species, understanding neoblast-driven tegumental maintenance could identify broad-spectrum therapeutics to fight diseases caused by these parasites.


Assuntos
Regulação da Expressão Gênica , Platelmintos/genética , Schistosoma mansoni/genética , Células-Tronco/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Epidérmicas/citologia , Células Epidérmicas/metabolismo , Células Epidérmicas/parasitologia , Epiderme/metabolismo , Epiderme/parasitologia , Proteínas de Helminto/classificação , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Filogenia , Platelmintos/citologia , Platelmintos/fisiologia , Interferência de RNA , Esquistossomose mansoni/parasitologia , Homologia de Sequência de Aminoácidos
15.
Artigo em Inglês | MEDLINE | ID: mdl-29207309

RESUMO

Over 4.5 billion people are at risk of infection with soil transmitted helminths and there are concerns about the development of resistance to the handful of frontline nematocides in endemic populations. We investigated the anti-nematode efficacy of a series of polypyridylruthenium(II) complexes and showed they were active against L3 and adult stages of Trichuris muris, the rodent homologue of the causative agent of human trichuriasis, T. trichiura. One of the compounds, Rubb12-mono, which was among the most potent in its ability to kill L3 (IC50 = 3.1 ± 0.4 µM) and adult (IC50 = 5.2 ± 0.3 µM) stage worms was assessed for efficacy in a mouse model of trichuriasis by administering 3 consecutive daily oral doses of the drug 3 weeks post infection with the murine whipworm Trichuris muris. Mice treated with Rubb12-mono showed an average 66% reduction (P = 0.015) in faecal egg count over two independent trials. The drugs partially exerted their activity through inhibition of acetylcholinesterases, as worms treated in vitro and in vivo showed significant decreases in the activity of this class of enzymes. Our data show that ruthenium complexes are effective against T. muris, a model gastro-intestinal nematode and soil-transmitted helminth. Further, knowledge of the target of ruthenium drugs can facilitate modification of current compounds to identify analogues which are even more effective and selective against Trichuris and other helminths of human and veterinary importance.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Antinematódeos/administração & dosagem , Antinematódeos/farmacologia , Trichuris/efeitos dos fármacos , Administração Oral , Animais , Antinematódeos/química , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Larva/efeitos dos fármacos , Masculino , Camundongos , Contagem de Ovos de Parasitas , Rutênio/administração & dosagem , Rutênio/química , Rutênio/farmacologia , Tricuríase/tratamento farmacológico , Tricuríase/parasitologia , Trichuris/enzimologia
16.
PLoS Negl Trop Dis ; 11(12): e0006134, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29240773

RESUMO

BACKGROUND: Schistosomiasis affects over 200 million people and there are concerns whether the current chemotherapeutic control strategy (periodic mass drug administration with praziquantel (PZQ)-the only licenced anti-schistosome compound) is sustainable, necessitating the development of new drugs. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the anti-schistosome efficacy of polypyridylruthenium(II) complexes and showed they were active against all intra-mammalian stages of S. mansoni. Two compounds, Rubb12-tri and Rubb7-tnl, which were among the most potent in their ability to kill schistosomula and adult worms and inhibit egg hatching in vitro, were assessed for their efficacy in a mouse model of schistosomiasis using 5 consecutive daily i.v. doses of 2 mg/kg (Rubb12-tri) and 10 mg/kg (Rubb7-tnl). Mice treated with Rubb12-tri showed an average 42% reduction (P = 0.009), over two independent trials, in adult worm burden. Liver egg burdens were not significantly decreased in either drug-treated group but ova from both of these groups showed significant decreases in hatching ability (Rubb12-tri-68%, Rubb7-tnl-56%) and were significantly morphologically altered (Rubb12-tri-62% abnormal, Rubb7-tnl-35% abnormal). We hypothesize that the drugs exerted their activity, at least partially, through inhibition of both neuronal and tegumental acetylcholinesterases (AChEs), as worms treated in vitro showed significant decreases in activity of these enzymes. Further, treated parasites exhibited a significantly decreased ability to uptake glucose, significantly depleted glycogen stores and withered tubercules (a site of glycogen storage), implying drug-mediated interference in this nutrient acquisition pathway. CONCLUSIONS/SIGNIFICANCE: Our data provide compelling evidence that ruthenium complexes are effective against all intra-mammalian stages of schistosomes, including schistosomula (refractory to PZQ) and eggs (agents of disease transmissibility). Further, the results of this study suggest that schistosome AChE is a target of ruthenium drugs, a finding that can inform modification of current compounds to identify analogues which are even more effective and selective against schistosomes.


Assuntos
Acetilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Compostos Organometálicos/farmacologia , Rutênio/farmacologia , Schistosoma haematobium/efeitos dos fármacos , Schistosoma mansoni/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Larva , Masculino , Camundongos , Praziquantel/uso terapêutico , Schistosoma haematobium/enzimologia , Schistosoma mansoni/enzimologia , Esquistossomose Urinária/tratamento farmacológico , Esquistossomose Urinária/parasitologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
17.
Emerg Top Life Sci ; 1(6): 659-665, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33525849

RESUMO

There is a rapidly growing body of evidence that production of extracellular vesicles (EVs) is a universal feature of cellular life. More recently, EVs have been identified in a broad range of both unicellular and multicellular parasites where they play roles in parasite-parasite intercommunication as well as parasite-host interactions. Parasitic helminth-derived EVs traverse host target cell membranes whereupon they offload their molecular cargo - proteins, lipids, and genetic information such as mRNAs and miRNAs - which are thought to hijack the target cell and modulate its gene expression to promote parasite survival. As such, EVs represent a novel mechanism of intercellular communication that could be targeted for vaccine-mediated interruption, given the abundance of surface antigens expressed on helminth EVs, and the ability of antibodies to block their uptake by target cells. In this Perspective article, we review recent developments in the field of helminth-derived EVs and highlight their roles in helminth vaccine discovery and development.

18.
Sci Rep ; 6: 32101, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27572696

RESUMO

Schistosomiasis and trichuriasis are two of the most common neglected tropical diseases (NTD) that affect almost a billion people worldwide. There is only a limited number of effective drugs to combat these NTD. Medicinal plants are a viable source of parasiticides. In this study, we have investigated six of the 19 phytochemicals isolated from two Bhutanese medicinal plants, Corydalis crispa and Pleurospermum amabile, for their anthelmintic properties. We used the xWORM technique and Scanning Electron Microscope-based imaging to determine the activity of the compounds. Of the six compounds tested, isomyristicin and bergapten showed significant anthelmintic activity against Schistosoma mansoni and Trichuris muris with bergapten being the most efficacious compound one against both parasites (S. mansoni IC50 = 8.6 µg/mL and T. muris IC50 = 10.6 µg/mL) and also against the schistosomulum stage of S. mansoni. These two compounds induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. The efficacy against multiple phylogenetically distinct parasites and different life stages, especially the schistosomulum where praziquantel is ineffective, makes isomyristicin and bergapten novel scaffolds for broad-spectrum anthelmintic drug development that could be used for the control of helminths infecting humans and animals.


Assuntos
Alcaloides/isolamento & purificação , Anti-Helmínticos/isolamento & purificação , Corydalis/química , Isoquinolinas/isolamento & purificação , Magnoliopsida/química , Plantas Medicinais/química , Schistosoma mansoni/efeitos dos fármacos , Trichuris/efeitos dos fármacos , Alcaloides/química , Alcaloides/farmacologia , Animais , Anti-Helmínticos/farmacologia , Butão , Descoberta de Drogas , Feminino , Isoquinolinas/química , Isoquinolinas/farmacologia , Masculino , Medicina Tradicional , Camundongos , Microscopia Eletrônica de Varredura , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Schistosoma mansoni/crescimento & desenvolvimento , Schistosoma mansoni/ultraestrutura , Trichuris/crescimento & desenvolvimento
19.
PLoS Negl Trop Dis ; 10(8): e0004908, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27490394

RESUMO

BACKGROUND: Whipworms and blood flukes combined infect almost one billion people in developing countries. Only a handful of anthelmintic drugs are currently available to treat these infections effectively; there is therefore an urgent need for new generations of anthelmintic compounds. Medicinal plants have presented as a viable source of new parasiticides. Ajania nubigena, the Bhutanese daisy, has been used in Bhutanese traditional medicine for treating various diseases and our previous studies revealed that small molecules from this plant have antimalarial properties. Encouraged by these findings, we screened four major compounds isolated from A. nubigena for their anthelmintic properties. METHODOLOGY/PRINCIPAL FINDINGS: Here we studied four major compounds derived from A. nubigena for their anthelmintic properties against the nematode whipworm Trichuris muris and the platyhelminth blood fluke Schistosoma mansoni using the xWORM assay technique. Of four compounds tested, two compounds-luteolin (3) and (3R,6R)-linalool oxide acetate (1)-showed dual anthelmintic activity against S. mansoni (IC50 range = 5.8-36.9 µg/mL) and T. muris (IC50 range = 9.7-20.4 µg/mL). Using scanning electron microscopy, we determined luteolin as the most efficacious compound against both parasites and additionally was found effective against the schistosomula, the infective stage of S. mansoni (IC50 = 13.3 µg/mL). Luteolin induced tegumental damage to S. mansoni and affected the cuticle, bacillary bands and bacillary glands of T. muris. Our in vivo assessment of luteolin (3) against T. muris infection at a single oral dosing of 100 mg/kg, despite being significantly (27.6%) better than the untreated control group, was markedly weaker than mebendazole (93.1%) in reducing the worm burden in mice. CONCLUSIONS/SIGNIFICANCE: Among the four compounds tested, luteolin demonstrated the best broad-spectrum activity against two different helminths-T. muris and S. mansoni-and was effective against juvenile schistosomes, the stage that is refractory to the current gold standard drug, praziquantel. Medicinal chemistry optimisation including cytotoxicity analysis, analogue development and structure-activity relationship studies are warranted and could lead to the identification of more potent chemical entities for the control of parasitic helminths of humans and animals.


Assuntos
Anti-Helmínticos/farmacologia , Extratos Vegetais/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose mansoni/tratamento farmacológico , Tricuríase/tratamento farmacológico , Trichuris/efeitos dos fármacos , Animais , Asteraceae/química , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Plantas Medicinais/química , Praziquantel/farmacologia , Relação Estrutura-Atividade
20.
Elife ; 5: e15957, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27081762

RESUMO

A population of stems cells continuously rejuvenates the outer surface of a human parasitic flatworm.


Assuntos
Parasitos , Schistosoma mansoni , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...