Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370780

RESUMO

While the functions of tyrosine phosphatases in T cell biology have been extensively studied, our knowledge on the contribution of serine/threonine phosphatases in T cells remains poor. Protein phosphatase 2A (PP2A) is one of the most abundantly expressed serine/threonine phosphatases. It is important in thymocyte development and CD4+ T cell differentiation. Utilizing a genetic model in which its catalytic subunit alpha isoform (PP2A Cα) is deleted in T cells, we investigated its contribution to CD8+ T cell homeostasis and effector functions. Our results demonstrate that T cell intrinsic PP2A Cα is critically required for CD8+ T cell homeostasis in secondary lymphoid organs and intestinal mucosal site. Importantly, PP2A Cα deficient CD8+ T cells exhibit reduced proliferation and survival. CD8+ T cell anti-bacterial response is strictly dependent on PP2A Cα. Expression of Bcl2 transgene rescues CD8+ T cell homeostasis in spleens, but not in intestinal mucosal site, nor does it restore the defective anti-bacterial responses. Finally, proteomics and phosphoproteomics analyses reveal potential targets dependent on PP2A Cα, including mTORC1 and AKT. Thus, PP2A Cα is a key modulator of CD8+ T cell homeostasis and effector functions.

2.
Brain ; 143(12): 3629-3652, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253355

RESUMO

Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Animais , Células da Medula Óssea/imunologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Progressão da Doença , Feminino , Genes MHC da Classe II/genética , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/imunologia , Glioma/metabolismo , Glioma/patologia , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Parabiose , Convulsões/induzido quimicamente , Baço/imunologia , Baço/patologia , Theilovirus , Timo/patologia
3.
Blood Adv ; 4(21): 5343-5356, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33125463

RESUMO

Human cytomegalovirus (HCMV) induces long-lasting T-cell immune responses that control but do not clear infection. Typical responses involve private T-cell clones, expressing T-cell antigen receptors (TCRs) unique to a person, and public T-cell clones with identical TCRs active in different people. Here, we report the development of a pretherapeutic immunostimulation modality against HCMV for human T cells, CD3 copotentiation, and the clonal analysis of its effects in recall assays at single-cell resolution. CD3 copotentiation of human T cells required identification of an intrinsically inert anti-CD3 Fab fragment that conditionally augmented signaling only when TCR was coengaged with antigen. When applied in recall assays, CD3 copotentiation enhanced the expansion of both public and private T-cell clones responding to autologous HLA-A2(+) antigen-presenting cells and immunodominant NLVPMVATV (NLV) peptide from HCMV pp65 protein. Interestingly, public vs private TCR expression was associated with distinct clonal expansion signatures in response to recall stimulus. This implied that besides possible differences in their generation and selection in an immune response, public and private T cells may respond differently to pharmacoimmunomodulation. Furthermore, a third clonal expansion profile was observed upon CD3 copotentiation of T-cell clones from HLA-A2(-) donors and 1 HLA-A2(+) presumed-uninfected donor, where NLV was of low intrinsic potency. We conclude that human T-cell copotentiation can increase the expansion of different classes of T-cell clones responding to recall antigens of different strengths, and this may be exploitable for therapeutic development against chronic, persistent infections such as HCMV.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Linfócitos T CD8-Positivos , Células Clonais , Antígeno HLA-A2 , Humanos
4.
J Immunol ; 205(5): 1228-1238, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32737149

RESUMO

Theiler's murine encephalomyelitis virus (TMEV) infection of the CNS is cleared in C57BL/6 mice by a CD8 T cell response restricted by the MHC class I molecule H-2Db The identity and function of the APC(s) involved in the priming of this T cell response is (are) poorly defined. To address this gap in knowledge, we developed an H-2Db LoxP-transgenic mouse system using otherwise MHC class I-deficient C57BL/6 mice, thereby conditionally ablating MHC class I-restricted Ag presentation in targeted APC subpopulations. We observed that CD11c+ APCs are critical for early priming of CD8 T cells against the immunodominant TMEV peptide VP2121-130 Loss of H-2Db on CD11c+ APCs mitigates the CD8 T cell response, preventing early viral clearance and immunopathology associated with CD8 T cell activity in the CNS. In contrast, animals with H-2Db-deficient LysM+ APCs retained early priming of Db:VP2121-130 epitope-specific CD8 T cells, although a modest reduction in immune cell entry into the CNS was observed. This work establishes a model enabling the critical dissection of H-2Db-restricted Ag presentation to CD8 T cells, revealing cell-specific and temporal features involved in the generation of CD8 T cell responses. Employing this novel system, we establish CD11c+ cells as pivotal to the establishment of acute antiviral CD8 T cell responses against the TMEV immunodominant epitope VP2121-130, with functional implications both for T cell-mediated viral control and immunopathology.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Cardiovirus/imunologia , Genes MHC Classe I/imunologia , Antígenos H-2/imunologia , Theilovirus/imunologia , Animais , Apresentação de Antígeno , Proteínas do Capsídeo/imunologia , Epitopos de Linfócito T/imunologia , Epitopos Imunodominantes/imunologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Commun Biol ; 2: 206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240244

RESUMO

Cells within tumors vary in phenotype as a result of changes in gene expression caused by a variety of mechanisms, permitting cancers to evolve under selective pressures from immune and other homeostatic processes. Earlier, we traced apparent losses in heterozygosity (LOH) of spontaneous breast tumors from first generation (F1) intercrossed mice to atypical epigenetic modifications in the structure of DNA across the tumor genomes. Here, we describe a parallel pattern of LOH in gene expression, revealed through quantitation of parental alleles across a population of clonal tumors. We found variegated patterns of LOH, based on allelic ratio outliers in hundreds of genes, enriched in regulatory pathways typically co-opted by tumors. The frequency of outliers was correlated with transcriptional repression of a large set of homozygous genes. These findings suggest stochastic losses in gene expression across the genome of tumors generate phenotypic variation among cells, allowing clonal selection during tumor development.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Homeostase , Neoplasias Mamárias Animais/genética , Processos Estocásticos , Alelos , Animais , Cruzamentos Genéticos , Epigênese Genética , Feminino , Mutação em Linhagem Germinativa , Cariotipagem , Perda de Heterozigosidade , Masculino , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mitose , Fenótipo , Análise de Sequência de RNA
6.
Proc Natl Acad Sci U S A ; 116(8): 3136-3145, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30728302

RESUMO

Successful efforts to activate T cells capable of recognizing weak cancer-associated self-antigens have employed altered peptide antigens to activate T cell responses capable of cross-reacting on native tumor-associated self. A limitation of this approach is the requirement for detailed knowledge about the altered self-peptide ligands used in these vaccines. In the current study we considered allorecognition as an approach for activating CTL capable of recognizing weak or self-antigens in the context of self-MHC. Nonself antigen-presenting molecules typically contain polymorphisms that influence interactions with the bound peptide and TCR interface. Recognition of these nonself structures results in peptide-dependent alloimmunity. Alloreactive T cells target their inducing alloantigens as well as third-party alloantigens but generally fail to target self-antigens. Certain residues located on the alpha-1/2 domains of class I antigen-presenting molecules primarily interface with TCR. These residues are more conserved within and across species than are residues that determine peptide antigen binding properties. Class I variants designed with amino acid substitutions at key positions within the conserved helical structures are shown to provide strong activating signals to alloreactive CD8 T cells while avoiding changes in naturally bound peptide ligands. Importantly, CTL activated in this manner can break self-tolerance by reacting to self-peptides presented by native MHC. The ability to activate self-tolerant T cells capable of cross-reacting on self-peptide-MHC in vivo represents an approach for inducing autoimmunity, with possible application in cancer vaccines.


Assuntos
Apresentação de Antígeno/imunologia , Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe I/imunologia , Linfócitos T Citotóxicos/imunologia , Sequência de Aminoácidos/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Humanos , Tolerância Imunológica , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Peptídeos/genética , Peptídeos/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
7.
Sci Immunol ; 4(32)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770409

RESUMO

During αß T cell development, T cell antigen receptor (TCR) engagement transduces biochemical signals through a protein-protein interaction (PPI) network that dictates dichotomous cell fate decisions. It remains unclear how signal specificity is communicated, instructing either positive selection to advance cell differentiation or death by negative selection. Early signal discrimination might occur by PPI signatures differing qualitatively (customized, unique PPI combinations for each signal), quantitatively (graded amounts of a single PPI series), or kinetically (speed of PPI pathway progression). Using a novel PPI network analysis, we found that early TCR-proximal signals distinguishing positive from negative selection appeared to be primarily quantitative in nature. Furthermore, the signal intensity of this PPI network was used to find an antigen dose that caused a classic negative selection ligand to induce positive selection of conventional αß T cells, suggesting that the quantity of TCR triggering was sufficient to program selection outcome. Because previous work had suggested that positive selection might involve a qualitatively unique signal through CD3δ, we reexamined the block in positive selection observed in CD3δ0 mice. We found that CD3δ0 thymocytes were inhibited but capable of signaling positive selection, generating low numbers of MHC-dependent αß T cells that expressed diverse TCR repertoires and participated in immune responses against infection. We conclude that the major role for CD3δ in positive selection is to quantitatively boost the signal for maximal generation of αß T cells. Together, these data indicate that a quantitative network signaling mechanism through the early proximal TCR signalosome determines thymic selection outcome.


Assuntos
Complexo CD3/metabolismo , Mapas de Interação de Proteínas/imunologia , Proteômica/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timo/metabolismo , Animais , Complexo CD3/genética , Complexo CD3/imunologia , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pneumonia por Pneumocystis/imunologia , Transdução de Sinais/imunologia , Theilovirus/imunologia , Timócitos/imunologia
8.
Blood ; 133(7): 697-709, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30463995

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy is a new pillar in cancer therapeutics; however, its application is limited by the associated toxicities. These include cytokine release syndrome (CRS) and neurotoxicity. Although the IL-6R antagonist tocilizumab is approved for treatment of CRS, there is no approved treatment of neurotoxicity associated with CD19-targeted CAR-T (CART19) cell therapy. Recent data suggest that monocytes and macrophages contribute to the development of CRS and neurotoxicity after CAR-T cell therapy. Therefore, we investigated neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) as a potential strategy to manage CART19 cell-associated toxicities. In this study, we show that GM-CSF neutralization with lenzilumab does not inhibit CART19 cell function in vitro or in vivo. Moreover, CART19 cell proliferation was enhanced and durable control of leukemic disease was maintained better in patient-derived xenografts after GM-CSF neutralization with lenzilumab. In a patient acute lymphoblastic leukemia xenograft model of CRS and neuroinflammation (NI), GM-CSF neutralization resulted in a reduction of myeloid and T cell infiltration in the central nervous system and a significant reduction in NI and prevention of CRS. Finally, we generated GM-CSF-deficient CART19 cells through CRISPR/Cas9 disruption of GM-CSF during CAR-T cell manufacturing. These GM-CSFk/o CAR-T cells maintained normal functions and had enhanced antitumor activity in vivo, as well as improved overall survival, compared with CART19 cells. Together, these studies illuminate a novel approach to abrogate NI and CRS through GM-CSF neutralization, which may potentially enhance CAR-T cell function. Phase 2 studies with lenzilumab in combination with CART19 cell therapy are planned.


Assuntos
Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Doenças do Sistema Imunitário/terapia , Inflamação/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Animais , Anticorpos Neutralizantes/farmacologia , Proliferação de Células , Humanos , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Síndrome , Transplante Heterólogo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Genomics ; 111(6): 1752-1759, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30529531

RESUMO

RNA sequencing (RNA-seq) has become the widely preferred choice for surveying the genome-wide transcriptome complexity in many organisms. However, the broad adaptation of this methodology into the clinic still needs further evaluation of potential effect of sample preparation factors on its analytical reliability using patient samples. In this study, we examined the impact of three major sample preparation factors (i.e., cDNA library storage time, the quantity of input RNA, and cryopreservation of cell samples) on sequence biases, gene expression profiles, and enriched biological functions using RNAs isolated from primary B cell and CD4+ cell blood samples of healthy subjects. Our comprehensive comparison results suggested that different cDNA library storage time, quantity of input RNA, and cryopreservation of cell samples did not significantly alter gene transcriptional expression profiles generated by RNA-seq experiments. These findings shed new lights on the potential applications of RNA-seq technique to patient samples in a regular clinical setting.


Assuntos
Perfilação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Transcriptoma , Humanos
10.
Cancer Res ; 78(15): 4411-4423, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29895674

RESUMO

Genome-wide identification and characterization of long noncoding RNAs (lncRNA) in individual immune cell lineages helps us better understand the driving mechanisms behind melanoma and advance personalized patient treatment. To elucidate the transcriptional landscape in diverse immune cell types of peripheral blood cells (PBC) in stage IV melanoma, we used whole transcriptome RNA sequencing to profile lncRNAs in CD4+, CD8+, and CD14+ PBC from 132 patient samples. Our integrative computational approach identified 27,625 expressed lncRNAs, 2,744 of which were novel. Both T cells (i.e., CD4+ and CD8+ PBC) and monocytes (i.e., CD14+ PBC) exhibited differential transcriptional expression profiles between patients with melanoma and healthy subjects. Cis- and trans-level coexpression analysis suggested that lncRNAs are potentially involved in many important immune-related pathways and the programmed cell death receptor 1 checkpoint pathways. We also identified nine gene coexpression modules significantly associated with melanoma status, all of which were significantly enriched for three mRNA translation processes. Age and melanoma traits closely correlated with each other, implying that melanoma contains age-associated immune changes. Our computational prediction analysis suggests that many cis- and trans-regulatory lncRNAs could interact with multiple transcriptional and posttranscriptional regulatory elements in CD4+, CD8+, and CD14+ PBC, respectively. These results provide novel insights into the regulatory mechanisms involving lncRNAs in individual immune cell types in melanoma and can help expedite cell type-specific immunotherapy treatments for such diseases.Significance: These findings elucidate melanoma-associated changes to the noncoding transcriptional landscape of distinct immune cell classes, thus providing cell type-specific guidance to targeted immunotherapy regimens. Cancer Res; 78(15); 4411-23. ©2018 AACR.


Assuntos
Genoma/genética , Melanoma/genética , RNA Longo não Codificante/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Monócitos/fisiologia , Linfócitos T/fisiologia , Transcrição Gênica/genética , Transcriptoma/genética
11.
Nat Commun ; 9(1): 633, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434238

RESUMO

The contribution of antigen-presenting cell (APC) types in generating CD8+ T cell responses in the central nervous system (CNS) is not fully defined, limiting the development of vaccines and understanding of immune-mediated neuropathology. Here, we generate a transgenic mouse that enables cell-specific deletion of the H-2Kb MHC class I molecule. By deleting H-2Kb on dendritic cells and macrophages, we compare the effect of each APC in three distinct models of neuroinflammation: picornavirus infection, experimental cerebral malaria, and a syngeneic glioma. Dendritic cells and macrophages both activate CD8+ T cell responses in response to these CNS immunological challenges. However, the extent to which each of these APCs contributes to CD8+ T cell priming varies. These findings reveal distinct functions for dendritic cells and macrophages in generating CD8+ T cell responses to neurological disease.


Assuntos
Apresentação de Antígeno , Encéfalo/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Modelos Animais de Doenças , Glioma/genética , Glioma/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Malária Cerebral/genética , Malária Cerebral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
12.
J Immunol ; 200(5): 1917-1928, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352003

RESUMO

Human immunity exhibits remarkable heterogeneity among individuals, which engenders variable responses to immune perturbations in human populations. Population studies reveal that, in addition to interindividual heterogeneity, systemic immune signatures display longitudinal stability within individuals, and these signatures may reliably dictate how given individuals respond to immune perturbations. We hypothesize that analyzing relationships among these signatures at the population level may uncover baseline immune phenotypes that correspond with response outcomes to immune stimuli. To test this, we quantified global gene expression in peripheral blood CD4+ cells from healthy individuals at baseline and following CD3/CD28 stimulation at two time points 1 mo apart. Systemic CD4+ cell baseline and poststimulation molecular immune response signatures (MIRS) were defined by identifying genes expressed at levels that were stable between time points within individuals and differential among individuals in each state. Iterative differential gene expression analyses between all possible phenotypic groupings of at least three individuals using the baseline and stimulated MIRS gene sets revealed shared baseline and response phenotypic groupings, indicating the baseline MIRS contained determinants of immune responsiveness. Furthermore, significant numbers of shared phenotype-defining sets of determinants were identified in baseline data across independent healthy cohorts. Combining the cohorts and repeating the analyses resulted in identification of over 6000 baseline immune phenotypic groups, implying that the MIRS concept may be useful in many immune perturbation contexts. These findings demonstrate that patterns in complex gene expression variability can be used to define immune phenotypes and discover determinants of immune responsiveness.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Expressão Gênica/genética , Ativação Linfocitária/imunologia , Transcriptoma/genética , Antígenos CD28/imunologia , Complexo CD3/imunologia , Expressão Gênica/imunologia , Humanos , Ativação Linfocitária/genética , Fenótipo , Transcriptoma/imunologia
13.
Mol Genet Genomic Med ; 6(1): 44-55, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216683

RESUMO

BACKGROUND: Deleterious mutations in PRF1 result in lethal, childhood disease, familial hemophagocytic lymphohistiocytosis type 2 (FHL 2). However, not all mutations in PRF1 are deleterious and result in FHL 2. Currently, these nondeleterious mutations are being investigated in the onset of numerous disorders, such as lymphomas and diabetes. Yet, there is still an overwhelmingly large amount of PRF1 mutations that are not associated with disease. METHODS: We conducted a post hoc analysis of the PRF1 mutations in the coding region using the recently published Exome Aggregation Consortium genomes, Leiden Open Variation Database, NCBI SNP database, and primary literature to better understand PRF1 variation in the human population. RESULTS: This study catalogs 460 PRF1 mutations in the coding region, and demonstrates PRF1 is more variant then previously predicted. We identify key PRF1 mutations with high allelic frequency and are only found in certain populations. Additionally, we define PRF1 SNVs are geographically distributed. CONCLUSIONS: This study concludes with a novel hypothesis that nondeleterious mutation in PRF1, which decreases perforin expression and/or activity, may be an example of selective advantage in the context of environmental stressors prevalent near the equator. Our studies illustrate how perforin deficiency can be protective from injuries resulting in blood-brain barrier (BBB) disruption.


Assuntos
Perforina/genética , Alelos , Sequência de Aminoácidos/genética , Bases de Dados de Ácidos Nucleicos , Etnicidade/genética , Frequência do Gene/genética , Variação Genética , Geografia/métodos , Humanos , Mutação , Mutação de Sentido Incorreto , Proteínas Citotóxicas Formadoras de Poros/genética
14.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807231

RESUMO

Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. IMPORTANCE: Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent vectors and vaccines than current RD-Ad vectors.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Replicação Viral , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Linhagem Celular , Cricetinae , Replicação do DNA , DNA Complementar/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunização , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Ratos , Proteínas Recombinantes de Fusão , Sigmodontinae
15.
Oncotarget ; 7(28): 42919-42942, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27341020

RESUMO

Many cancers both evoke and subvert endogenous anti-tumor immunity. However, immunosuppression can be therapeutically reversed in subsets of cancer patients by treatments such as checkpoint inhibitors or Toll-like receptor agonists (TLRa). Moreover, chemotherapy can leukodeplete immunosuppressive host elements, including myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). We hypothesized that chemotherapy-induced leukodepletion could be immunopotentiated by co-administering TLRa to emulate a life-threatening infection. Combining CpG (ODN 1826) or CpG+poly(I:C) with cyclophosphamide (CY) resulted in uniquely well-tolerated therapeutic synergy, permanently eradicating advanced mouse tumors including 4T1 (breast), Panc02 (pancreas) and CT26 (colorectal). Definitive treatment required endogenous CD8+ and CD4+ IFNγ-producing T-cells. Tumor-specific IFNγ-producing T-cells persisted during CY-induced leukopenia, whereas Tregs were progressively eliminated, especially intratumorally. Spleen-associated MDSCs were cyclically depleted by CY+TLRa treatment, with residual monocytic MDSCs requiring only continued exposure to CpG or CpG+IFNγ to effectively attack malignant cells while sparing non-transformed cells. Such tumor destruction occurred despite upregulated tumor expression of Programmed Death Ligand-1, but could be blocked by clodronate-loaded liposomes to deplete phagocytic cells or by nitric oxide synthase inhibitors. CY+TLRa also induced tumoricidal myeloid cells in naive mice, indicating that CY+TLRa's immunomodulatory impacts occurred in the complete absence of tumor-bearing, and that tumor-induced MDSCs were not an essential source of tumoricidal myeloid precursors. Repetitive CY+TLRa can therefore modulate endogenous immunity to eradicate advanced tumors without vaccinations or adoptive T-cell therapy. Human blood monocytes could be rendered similarly tumoricidal during in vitro activation with TLRa+IFNγ, underscoring the potential therapeutic relevance of these mouse tumor studies to cancer patients.


Assuntos
Ciclofosfamida/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Oligodesoxirribonucleotídeos/farmacologia , Poli I-C/farmacologia , Linfócitos T/efeitos dos fármacos , Receptores Toll-Like/agonistas , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunossupressores/farmacologia , Indutores de Interferon/farmacologia , Interferon gama/imunologia , Interferon gama/metabolismo , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptores Toll-Like/metabolismo
16.
J Immunol ; 195(12): 5648-56, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26561552

RESUMO

Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum resident protein that is widely expressed. Although it has been demonstrated to participate in the tail-anchored protein insertion pathway, its physiological role in the mature immune system is unknown. In this work, we show that mature, peripheral T cells require CAML for survival specifically following TCR-induced activation. In this study, we examined mature T cells from spleen and lymph nodes of tamoxifen-inducible CAML knockout mice (tCAML(-/-)). Whereas CAML-deficient T cells were able to express the early activation markers CD25 and CD69, and produce IL-2 normally upon stimulation, deficient cells proliferated less and died. Cells did not require CAML for entry into the S phase of the cell cycle, thus implicating its survival function at a relatively late step in the T cell activation sequence. In addition, CAML was required for homeostatic proliferation and for Ag-dependent cell killing in vivo. These results demonstrate that CAML critically supports T cell survival and cell division downstream of T cell activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cálcio/metabolismo , Ciclofilinas/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Imunidade Adaptativa , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados , Sobrevivência Celular , Células Cultivadas , Ligantes , Ativação Linfocitária , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia
17.
Sci Adv ; 1(9): e1500415, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26601285

RESUMO

Adaptive immunity is mediated by antigen receptors that can induce weak or strong immune responses depending on the nature of the antigen that is bound. In T lymphocytes, antigen recognition triggers signal transduction by clustering T cell receptor (TCR)/CD3 multiprotein complexes. In addition, it hypothesized that biophysical changes induced in TCR/CD3 that accompany receptor engagement may contribute to signal intensity. Nonclustering monovalent TCR/CD3 engagement is functionally inert despite the fact that it may induce changes in conformational arrangement or in the flexibility of receptor subunits. We report that the intrinsically inert monovalent engagement of TCR/CD3 can specifically enhance physiologic T cell responses to weak antigens in vitro and in vivo without stimulating antigen-unengaged T cells and without interrupting T cell responses to strong antigens, an effect that we term as "co-potentiation." We identified Mono-7D6-Fab, which biophysically altered TCR/CD3 when bound and functionally enhanced immune reactivity to several weak antigens in vitro, including a gp100-derived peptide associated with melanoma. In vivo, Mono-7D6-Fab induced T cell antigen-dependent therapeutic responses against melanoma lung metastases, an effect that synergized with other anti-melanoma immunotherapies to significantly improve outcome and survival. We conclude that Mono-7D6-Fab directly co-potentiated TCR/CD3 engagement by weak antigens and that such concept can be translated into an immunotherapeutic design. The co-potentiation principle may be applicable to other receptors that could be regulated by otherwise inert compounds whose latent potency is only invoked in concert with specific physiologic ligands.

18.
PLoS One ; 10(9): e0137984, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26389800

RESUMO

Antigen-specific T cell responses can be visualized using MHC:peptide multimers. In cases where robust T cell controls are not readily available to assess the integrity of multimer reagents prior to analyzing limited sample, the ability to assess the structural integrity of MHC multimers before their use in critical experiments would be useful. We present a method to probe the structural integrity of MHC multimers using antibodies specific for conformational determinants. Beads coated with anti-mouse Ig are incubated with conformation-specific mouse monoclonal antibody and then with fluorescently tagged MHC multimer. The ability of the bead to capture the labeled multimer can be measured semi-quantitatively by flow cytometry. In this manner, the correct folding of MHC multimers can be visualized and batches of multimer can be compared for quality control. Because there are multiple conformational epitopes formed by various molecular interactions among heavy chain, peptide, and ß2M, this capture assay can assess the fidelity of each aspect of multimer structure, depending on the availability of antibodies. The described approach could be particularly useful for studies using irreplaceable samples, including patient samples collected in clinical trials.


Assuntos
Antígenos/imunologia , Linfócitos T/imunologia , Animais , Camundongos , Conformação Proteica
19.
Cancer Immunol Immunother ; 64(11): 1437-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26245876

RESUMO

Melanoma patients exhibit changes in immune responsiveness in the local tumor environment, draining lymph nodes, and peripheral blood. Immune-targeting therapies are revolutionizing melanoma patient care increasingly, and studies show that patients derive clinical benefit from these newer agents. Nonetheless, predicting which patients will benefit from these costly therapies remains a challenge. In an effort to capture individual differences in immune responsiveness, we are analyzing patterns of gene expression in human peripheral blood cells using RNAseq. Focusing on CD4+ peripheral blood cells, we describe multiple categories of immune regulating genes, which are expressed in highly ordered patterns shared by cohorts of healthy subjects and stage IV melanoma patients. Despite displaying conservation in overall transcriptome structure, CD4+ peripheral blood cells from melanoma patients differ quantitatively from healthy subjects in the expression of more than 2000 genes. Moreover, 1300 differentially expressed genes are found in transcript response patterns following activation of CD4+ cells ex vivo, suggesting that widespread functional discrepancies differentiate the immune systems of healthy subjects and melanoma patients. While our analysis reveals that the transcriptome architecture characteristic of healthy subjects is maintained in cancer patients, the genes expressed differentially among individuals and across cohorts provide opportunities for understanding variable immune states as well as response potentials, thus establishing a foundation for predicting individual responses to stimuli such as immunotherapeutic agents.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Perfilação da Expressão Gênica , Melanoma/imunologia , Adulto , Antígenos CD28/fisiologia , Feminino , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Receptores de Antígenos de Linfócitos T/fisiologia , Análise de Sequência de RNA , Transdução de Sinais
20.
Am J Respir Crit Care Med ; 192(5): 605-17, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26030344

RESUMO

RATIONALE: Most immunocompetent patients diagnosed with latent tuberculosis infection (LTBI) will not progress to tuberculosis (TB) reactivation. However, current diagnostic tools cannot reliably distinguish nonprogressing from progressing patients a priori, and thus LTBI therapy must be prescribed with suboptimal patient specificity. We hypothesized that LTBI diagnostics could be improved by generating immunomarker profiles capable of categorizing distinct patient subsets by a combinatorial immunoassay approach. OBJECTIVES: A combinatorial immunoassay analysis was applied to identify potential immunomarker combinations that distinguish among unexposed subjects, untreated patients with LTBI, and treated patients with LTBI and to differentiate risk of reactivation. METHODS: IFN-γ release assay (IGRA) was combined with a flow cytometric assay that detects induction of CD25(+)CD134(+) coexpression on TB antigen-stimulated T cells from peripheral blood. The combinatorial immunoassay analysis was based on receiver operating characteristic curves, technical cut-offs, 95% bivariate normal density ellipse prediction, and statistical analysis. Risk of reactivation was estimated with a prediction formula. MEASUREMENTS AND MAIN RESULTS: Sixty-five out of 150 subjects were included. The combinatorial immunoassay approach identified at least four different T-cell subsets. The representation of these immune phenotypes was more heterogeneous in untreated patients with LTBI than in treated patients with LTBI or unexposed groups. Patients with IGRA(+) CD4(+)CD25(+)CD134(+) T-cell phenotypes had the highest estimated reactivation risk (4.11 ± 2.11%). CONCLUSIONS: These findings suggest that immune phenotypes defined by combinatorial assays may potentially have a role in identifying those at risk of developing TB; this potential role is supported by risk of reactivation modeling. Prospective studies will be needed to test this novel approach.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Imunocompetência/imunologia , Testes de Liberação de Interferon-gama , Tuberculose Latente/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Estudos de Coortes , Feminino , Citometria de Fluxo , Humanos , Imunoensaio , Subunidade alfa de Receptor de Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Curva ROC , Receptores OX40/imunologia , Medição de Risco , Linfócitos T/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...