Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696761

RESUMO

SUMMARY: PlasCAT (Plasmid Cloud Assembly Tool) is an easy-to-use cloud-based bioinformatics tool that enables de novo plasmid sequence assembly from raw sequencing data. Nontechnical users can now assemble sequences from long reads and short reads without ever touching a line of code. PlasCAT uses high-performance computing servers to reduce run times on assemblies and deliver results faster. AVAILABILITY AND IMPLEMENTATION: PlasCAT is freely available on the web at https://sequencing.genofab.com. The assembly pipeline source code and server code are available for download at https://bitbucket.org/genofabinc/workspace/projects/PLASCAT. Click the Cancel button to access the source code without authenticating. Web servers implemented in React.js and Python, with all major browsers supported.


Assuntos
Plasmídeos , Software , Plasmídeos/genética , Computação em Nuvem , Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Internet
2.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38585828

RESUMO

Despite the wide use of plasmids in research and clinical production, verifying plasmid sequences is a bottleneck often underestimated in the manufacturing process. While sequencing platforms continue to improve, the chosen method and assembly pipeline still significantly influence the final plasmid assembly sequence. Furthermore, few dedicated tools exist for plasmid assembly, particularly for de novo assembly. Here, we evaluated short-read, long-read, and hybrid (both short and long reads) de novo assembly pipelines across three replicates of a 24-plasmid library. Consistent with previous characterizations of each sequencing technology, short-read assemblies faced challenges in resolving GC-rich regions, and long-read assemblies commonly exhibited small insertions and deletions, especially in repetitive regions. The hybrid approach facilitated the most accurate and consistent assembly generation, identifying mutations relative to the reference sequence. While Sanger sequencing can verify specific regions, some GC-rich and repetitive regions were challenging to resolve using any method, indicating that easily sequenced genetic parts should be prioritized in designing new genetic constructs.

3.
Trends Biotechnol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38418329

RESUMO

In a bioeconomy that relies on synthetic DNA sequences, the ability to ensure their authenticity is critical. DNA watermarks can encode identifying data in short sequences and can be combined with error correction and encryption protocols to ensure that sequences are robust to errors and securely communicated. New digital signature techniques allow for public verification that a sequence has not been modified and can contain sufficient information for synthetic DNA to be self-documenting. In translating these techniques from bacteria to more complex genetically modified organisms (GMOs), special considerations must be made to allow for public verification of these products. We argue that these approaches should be widely implemented to assert authorship, increase the traceability, and detect the unauthorized use of synthetic DNA.

4.
PLoS Comput Biol ; 20(2): e1011373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324583

RESUMO

We present the first complete stochastic model of vesicular stomatitis virus (VSV) intracellular replication. Previous models developed to capture VSV's intracellular replication have either been ODE-based or have not represented the complete replicative cycle, limiting our ability to understand the impact of the stochastic nature of early cellular infections on virion production between cells and how these dynamics change in response to mutations. Our model accurately predicts changes in mean virion production in gene-shuffled VSV variants and can capture the distribution of the number of viruses produced. This model has allowed us to enhance our understanding of intercellular variability in virion production, which appears to be influenced by the duration of the early phase of infection, and variation between variants, arising from balancing the time the genome spends in the active state, the speed of incorporating new genomes into virions, and the production of viral components. Being a stochastic model, we can also assess other effects of mutations beyond just the mean number of virions produced, including the probability of aborted infections and the standard deviation of the number of virions produced. Our model provides a biologically interpretable framework for studying the stochastic nature of VSV replication, shedding light on the mechanisms underlying variation in virion production. In the future, this model could enable the design of more complex viral phenotypes when attenuating VSV, moving beyond solely considering the mean number of virions produced.


Assuntos
Estomatite Vesicular , Animais , Estomatite Vesicular/genética , Vírus da Estomatite Vesicular Indiana/genética , Vírion/genética , Replicação Viral/genética , Mutação
5.
PLoS Comput Biol ; 19(12): e1011652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060459

RESUMO

Information is the cornerstone of research, from experimental (meta)data and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems to transform this large information load into useful scientific findings.

6.
Genome Biol Evol ; 15(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37717171

RESUMO

Although asexual lineages evolved from sexual lineages in many different taxa, the genetics of sex loss remains poorly understood. We addressed this issue in the pea aphid Acyrthosiphon pisum, whose natural populations encompass lineages performing cyclical parthenogenesis (CP) and producing one sexual generation per year, as well as obligate parthenogenetic (OP) lineages that can no longer produce sexual females but can still produce males. An SNP-based, whole-genome scan of CP and OP populations sequenced in pools (103 individuals from 6 populations) revealed that an X-linked region is associated with the variation in reproductive mode. This 840-kb region is highly divergent between CP and OP populations (FST = 34.9%), with >2,000 SNPs or short Indels showing a high degree of association with the phenotypic trait. In OP populations specifically, this region also shows reduced diversity and Tajima's D, consistent with the OP phenotype being a derived trait in aphids. Interestingly, the low genetic differentiation between CP and OP populations at the rest of the genome (FST = 2.5%) suggests gene flow between them. Males from OP lineages thus likely transmit their op allele to new genomic backgrounds. These genetic exchanges, combined with the selection of the OP and CP reproductive modes under different climates, probably contribute to the long-term persistence of the cp and op alleles.


Assuntos
Afídeos , Humanos , Masculino , Animais , Feminino , Afídeos/genética , Pisum sativum , Variação Genética , Partenogênese/genética , Genômica , Reprodução Assexuada/genética
7.
J Invertebr Pathol ; 197: 107893, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754115

RESUMO

Wolbachia bacterial endosymbionts provide protection against pathogens in various arthropod species but the underlying mechanisms remain misunderstood. By using a natural Wolbachia nuclear insert (f-element) in the isopod Armadillidium vulgare, we explored whether Wolbachia presence is mandatory to observe protection in this species or the presence of its genes is sufficient. We assessed survival of closely related females carrying or lacking the f-element (and lacking Wolbachia) challenged with the bacterial pathogen Salmonella enterica. Despite marginal significant effects, the f-element alone did not appear to confer survival benefits to its host, suggesting that Wolbachia presence in cells is crucial for protection.


Assuntos
Simbiose , Wolbachia , Feminino , Animais , Bactérias
8.
Biol Lett ; 19(1): 20220457, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36628964

RESUMO

In the isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios, owing to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and the f element. We investigated the distribution and population dynamics of these SRD and mitochondrial DNA variation in 16 populations from Europe and Japan. Confirming and extending results from the 1990s, we found that the SRD are present at variable frequencies in populations and that the f element is overall more frequent than Wolbachia. The two SRD never co-occur at high frequency in any population, suggesting an apparent mutual exclusion. We also detected Wolbachia or the f element in some males, which probably reflects insufficient titer to induce feminization or presence of masculinizing alleles. Our results are consistent with a single integration event of a Wolbachia genome in the A. vulgare genome at the origin of the f element, which contradicts an earlier hypothesis of frequent losses and gains. We identified strong linkage between Wolbachia strains and mitochondrial haplotypes, but no association between the f element and mitochondrial background. Our results open new perspectives on SRD evolutionary dynamics in A. vulgare, the evolution of genetic conflicts and their impact on the variability of sex determination systems.


Assuntos
Isópodes , Wolbachia , Masculino , Animais , Feminino , Isópodes/genética , Razão de Masculinidade , Haplótipos , Europa (Continente) , Japão , Wolbachia/genética
9.
ACS Synth Biol ; 11(2): 522-527, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35176864

RESUMO

The ability to construct, synthesize, and edit genes and genomes at scale and with speed enables, in synergy with other tools of engineering biology, breakthrough applications with far-reaching implications for society. As SARS-CoV-2 spread around the world in early spring of 2020, researchers rapidly mobilized, using these tools in the development of diagnostics, therapeutics, and vaccines for COVID-19. The sharing of knowledge was crucial to making rapid progress. Several publications described the use of reverse genetics for the de novo construction of SARS-CoV-2 in the laboratory, one in the form of a protocol. Given the demonstrable harm caused by the virus, the unequal distribution of mitigating vaccines and therapeutics, their unknown efficacy against variants, and the interest in this research by laboratories unaccustomed to working with highly transmissible pandemic pathogens, there are risks associated with such publications, particularly as protocols. We describe considerations and offer suggestions for enhancing security in the publication of synthetic biology research and techniques. We recommend: (1) that protocol manuscripts for the de novo synthesis of certain pathogenic viruses undergo a mandatory safety and security review; (2) that if published, such papers include descriptions of the discussions or review processes that occurred regarding security considerations in the main text; and (3) the development of a governance framework for the inclusion of basic security screening during the publication process of engineering biology/synthetic biology manuscripts to build and support a safe and secure research enterprise that is able to maximize its positive impacts and minimize any negative outcomes.


Assuntos
Bioengenharia , Editoração , Medidas de Segurança/organização & administração , Genes Virais , SARS-CoV-2/genética , Biologia Sintética
10.
Curr Zool ; 67(4): 455-464, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34616942

RESUMO

Wolbachia are the most widespread endosymbiotic bacteria in animals. In many arthropod host species, they manipulate reproduction via several mechanisms that favor their maternal transmission to offspring. Among them, cytoplasmic incompatibility (CI) promotes the spread of the symbiont by specifically decreasing the fertility of crosses involving infected males and uninfected females, via embryo mortality. These differences in reproductive efficiency may select for the avoidance of incompatible mating, a process called reinforcement, and thus contribute to population divergence. In the terrestrial isopod Porcellio dilatatus, the Wolbachia wPet strain infecting the subspecies P. d. petiti induces unidirectional CI with uninfected individuals of the subspecies P. d. dilatatus. To study the consequences of CI on P. d. dilatatus and P. d. petiti hybridization, mitochondrial haplotypes and Wolbachia infection dynamics, we used population cages seeded with different proportions of the 2 subspecies in which we monitored these genetic parameters 5 and 7 years after the initial setup. Analysis of microsatellite markers allowed evaluating the degree of hybridization between individuals of the 2 subspecies. These markers revealed an increase in P. d. dilatatus nuclear genetic signature in all mixed cages, reflecting an asymmetry in hybridization. Hybridization led to the introgressive acquisition of Wolbachia and mitochondrial haplotype from P. d. petiti into nuclear genomes dominated by alleles of P. d. dilatatus. We discuss these results with regards to Wolbachia effects on their host (CI and putative fitness cost), and to a possible reinforcement that may have led to assortative mating, as possible factors contributing to the observed results.

11.
Synth Biol (Oxf) ; 6(1): ysab028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604538

RESUMO

Sharing research data is an integral part of the scientific publishing process. By sharing data, authors enable their readers to use their results in a way that the textual description of the results does not allow by itself. In order to achieve this objective, data should be shared in a way that makes it as easy as possible for readers to import them in computer software where they can be viewed, manipulated and analyzed. Many authors and reviewers seem to misunderstand the purpose of the data sharing policies developed by journals. Rather than being an administrative burden that authors should comply with to get published, the objective of these policies is to help authors maximize the impact of their work by allowing other members of the scientific community to build upon it. Authors and reviewers need to understand the purpose of data sharing policies to assist editors and publishers in their efforts to ensure that every article published complies with them.

12.
Biodivers Data J ; 9: e68860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267597

RESUMO

BACKGROUND: Cacopsylla pruni is a psyllid that has been known since 1998 as the vector of the bacterium 'Candidatus Phytoplasma prunorum', responsible for the European stone fruit yellows (ESFY), a disease that affects species of Prunus. This disease is one of the major limiting factors for the production of stone fruits, most notably apricot (Prunus armeniaca) and Japanese plum (P. salicina), in all EU stone fruit-growing areas. The psyllid vector is widespread in the Western Palearctic and evidence for the presence of the phytoplasma that it transmits to species of Prunus has been found in 15 of the 27 EU countries.Recent studies showed that C. pruni is actually composed of two cryptic species that can be differentiated by molecular markers. A literature review on the distribution of C. pruni was published in 2012, but it only provided presence or absence information at the country level and without distinction between the two cryptic species.Since 2012, numerous new records of the vector in several European countries have been published. We ourselves have acquired a large amount of data from sampling in France and other European countries. We have also carried out a thorough systematic literature review to find additional records, including all the original sources mentioning C. pruni (or its synonyms) since the first description by Scopoli in 1763. Our aim was to create an exhaustive georeferenced occurrence catalogue, in particular in countries that are occasionally mentioned in literature with little detail. Finally, for countries that seem suitable for the proliferation of C. pruni (USA, Canada, Japan, China etc.), we dug deeper into literature and reliable sources (e.g. published checklists) to better substantiate its current absence from those regions.Information on the distribution ranges of these vector psyllids is of crucial interest in order to best predict the vulnerability of stone fruit producing countries to the ESFY threat in the foreseeable future. NEW INFORMATION: We give free access to a unique file of 1975 records of all occurrence data in our possession concerning C. pruni, that we have gathered through more than twenty years of sampling efforts in Europe or through intensive text mining.We have made every effort to retrieve the source information for the records extracted from literature (1201 records). Thus, we always give the title of the original reference, together with the page(s) citing C. pruni and, if possible, the year of sampling. To make the results of this survey publicly available, we give a URL to access the literature sources. In most cases, this link allows free downloads of a PDF file.We also give access to information extracted from GBIF (162 exploitable data points on 245 occurrences found in the database), which we thoroughly checked and often supplemented to make the information more easily exploitable.We give access to our own unpublished georeferenced and genotyped records from 612 samples taken over the last 20 years in several European countries (Switzerland, Belgium, Netherlands, Spain etc.). These include two countries (Portugal and North Macedonia), for which the presence of C. pruni had not been reported before. As our specimens have been genotyped (74 sites with species A solely, 202 with species B solely and 310 with species A+B), our new data enable a better overview of the geographical distribution of the two cryptic species at the Palaearctic scale.

13.
Mol Biol Evol ; 38(9): 3512-3530, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34191026

RESUMO

The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host-virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts' genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.


Assuntos
Artrópodes , Vírus , Animais , Artrópodes/genética , Baculoviridae/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Insetos/genética , Vírus/genética
14.
Genome Biol Evol ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34048551

RESUMO

Sex chromosomes are generally derived from a pair of autosomes that have acquired a locus controlling sex. Sex chromosomes may evolve reduced recombination around this locus and undergo a long process of molecular divergence. At that point, the original loci controlling sex may be difficult to pinpoint. This difficulty has affected many model species from mammals to birds to flies, which present highly diverged sex chromosomes. Identifying sex-controlling loci is easier in species with molecularly similar sex chromosomes. Here we aimed at pinpointing the sex-determining region (SDR) of Armadillidium vulgare, a terrestrial isopod with female heterogamety (ZW females and ZZ males) and whose sex chromosomes appear to show low genetic divergence. To locate the SDR, we assessed single-nucleotide polymorphism (SNP) allele frequencies in F1 daughters and sons sequenced in pools (pool-seq) in several families. We developed a Bayesian method that uses the SNP genotypes of individually sequenced parents and pool-seq data from F1 siblings to estimate the genetic distance between a given genomic region (contig) and the SDR. This allowed us to assign more than 43 Mb of contigs to sex chromosomes, and to demonstrate extensive recombination and very low divergence between these chromosomes. By taking advantage of multiple F1 families, we delineated a very short genomic region (∼65 kb) that presented no evidence of recombination with the SDR. In this short genomic region, the comparison of sequencing depths between sexes highlighted female-specific genes that have undergone recent duplication, and which may be involved in sex determination in A. vulgare.


Assuntos
Genoma , Cromossomos Sexuais , Animais , Teorema de Bayes , Feminino , Genômica , Haplótipos , Humanos , Masculino , Mamíferos/genética , Núcleo Familiar , Cromossomos Sexuais/genética , Processos de Determinação Sexual
15.
Annu Rev Entomol ; 66: 355-372, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32931312

RESUMO

Insects are major contributors to our understanding of the interaction between transposable elements (TEs) and their hosts, owing to seminal discoveries, as well as to the growing number of sequenced insect genomes and population genomics and functional studies. Insect TE landscapes are highly variable both within and across insect orders, although phylogenetic relatedness appears to correlate with similarity in insect TE content. This correlation is unlikely to be solely due to inheritance of TEs from shared ancestors and may partly reflect preferential horizontal transfer of TEs between closely related species. The influence of insect traits on TE landscapes, however, remains unclear. Recent findings indicate that, in addition to being involved in insect adaptations and aging, TEs are seemingly at the cornerstone of insect antiviral immunity. Thus, TEs are emerging as essential insect symbionts that may have deleterious or beneficial consequences on their hosts, depending on context.


Assuntos
Evolução Biológica , Elementos de DNA Transponíveis , Insetos/genética , Animais , Genoma de Inseto
16.
ACS Synth Biol ; 9(10): 2656-2664, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32916048

RESUMO

The field of synthetic biology relies on an ever-growing supply chain of synthetic genetic material. Technologies to secure the exchange of this material are still in their infancy. Solutions proposed thus far have focused on watermarks, a dated security approach that can be used to claim authorship, but is subject to counterfeit, and does not provide any information about the integrity of the genetic material itself. In this manuscript, we describe how data encryption and digital signature algorithms can be used to ensure the integrity and authenticity of synthetic genetic constructs. Using a pilot software that generates digital signatures and other encrypted data for plasmids, we demonstrate that we can predictably extract information about the author, the identity, the integrity of plasmid sequences, and even annotations from sequencing data alone without a reference sequence, all without compromising the function of the plasmids. Encoding a digital signature into a DNA molecule provides an avenue for genetic designers to claim authorship of DNA molecules. This technology could help compliance with material transfer agreements and other licensing agreements.


Assuntos
Algoritmos , Segurança Computacional , Software , Sequência de Bases , DNA/genética , Escherichia coli/genética , Estudos de Viabilidade , Engenharia Genética/métodos , Humanos , Mutação , Projetos Piloto , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único , Biologia Sintética/métodos
17.
Nucleic Acids Res ; 48(18): e106, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32890398

RESUMO

Plasmids are a foundational tool for basic and applied research across all subfields of biology. Increasingly, researchers in synthetic biology are relying on and developing massive libraries of plasmids as vectors for directed evolution, combinatorial gene circuit tests, and for CRISPR multiplexing. Verification of plasmid sequences following synthesis is a crucial quality control step that creates a bottleneck in plasmid fabrication workflows. Crucially, researchers often elect to forego the cumbersome verification step, potentially leading to reproducibility and-depending on the application-security issues. In order to facilitate plasmid verification to improve the quality and reproducibility of life science research, we developed a fast, simple, and open source pipeline for assembly and verification of plasmid sequences from Illumina reads. We demonstrate that our pipeline, which relies on de novo assembly, can also be used to detect contaminating sequences in plasmid samples. In addition to presenting our pipeline, we discuss the role for verification and quality control in the increasingly complex life science workflows ushered in by synthetic biology.


Assuntos
Bases de Dados Genéticas , Plasmídeos/genética , Análise de Sequência de DNA/métodos , Composição de Bases , Sequência de Bases , Escherichia coli/genética
18.
PLoS One ; 15(8): e0236293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760074

RESUMO

To divide replicated chromosomes equally between daughter cells, kinetochores must attach to microtubules emanating from opposite poles of the mitotic spindle (biorientation). An error correction mechanism facilitates this process by destabilizing erroneous kinetochore-microtubule attachments. Here we present a stochastic model of kinetochore-microtubule attachments, via an essential protein Ndc80 in budding yeast, Saccharomyces cerevisiae. Using the model, we calculate the stochastic dynamics of a pair of sister kinetochores as they transition among different attachment states. First of all, we determine the kinase-to-phosphatase balance point that maximizes the probability of biorientation, while starting from an erroneous attachment state. We find that the balance point is sensitive to the rates of microtubule-Ndc80 dissociation and derive an approximate analytical formula that defines the balance point. Secondly, we determine the probability of transition from low-tension amphitelic to monotelic attachment and find that, despite this probability being approximately 33%, biorientation can be achieved with high probability. Thirdly, we calculate the contribution of the geometrical orientation of sister kinetochores to the probability of biorientation and show that, in the absence of geometrical orientation, the biorientation error rate is much larger than that observed in experiments. Finally, we study the coupling of the error correction mechanism to the spindle assembly checkpoint by calculating the average binding of checkpoint-related proteins to the kinetochore during the error correction process.


Assuntos
Segregação de Cromossomos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Modelos Genéticos , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Processos Estocásticos
19.
NPJ Syst Biol Appl ; 6(1): 11, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376972

RESUMO

Over the last 30 years, computational biologists have developed increasingly realistic mathematical models of the regulatory networks controlling the division of eukaryotic cells. These models capture data resulting from two complementary experimental approaches: low-throughput experiments aimed at extensively characterizing the functions of small numbers of genes, and large-scale genetic interaction screens that provide a systems-level perspective on the cell division process. The former is insufficient to capture the interconnectivity of the genetic control network, while the latter is fraught with irreproducibility issues. Here, we describe a hybrid approach in which the 630 genetic interactions between 36 cell-cycle genes are quantitatively estimated by high-throughput phenotyping with an unprecedented number of biological replicates. Using this approach, we identify a subset of high-confidence genetic interactions, which we use to refine a previously published mathematical model of the cell cycle. We also present a quantitative dataset of the growth rate of these mutants under six different media conditions in order to inform future cell cycle models.


Assuntos
Ciclo Celular/genética , Saccharomyces cerevisiae/genética , Divisão Celular/genética , Biologia Computacional/métodos , Epistasia Genética/genética , Regulação Fúngica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Ensaios de Triagem em Larga Escala/métodos , Modelos Teóricos , Proteínas de Saccharomyces cerevisiae/genética
20.
Sci Rep ; 10(1): 5873, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245992

RESUMO

Laboratory strains, cell lines, and other genetic materials change hands frequently in the life sciences. Despite evidence that such materials are subject to mix-ups, contamination, and accumulation of secondary mutations, verification of strains and samples is not an established part of many experimental workflows. With the plummeting cost of next generation technologies, it is conceivable that whole genome sequencing (WGS) could be applied to routine strain and sample verification in the future. To demonstrate the need for strain validation by WGS, we sequenced haploid yeast segregants derived from a popular commercial mutant collection and identified several unexpected mutations. We determined that available bioinformatics tools may be ill-suited for verification and highlight the importance of finishing reference genomes for commonly used laboratory strains.


Assuntos
Controle de Qualidade , Sequenciamento Completo do Genoma , Pesquisa Biomédica , Genoma/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Sequenciamento Completo do Genoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...