Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247535

RESUMO

Hyoseris radiata L. (Asteraceae), known as "wild chicory", is a perennial herbaceous plant native to the Mediterranean region, North Africa, and West Asia. Collected from the wild, the plant is largely used in Italy for culinary purposes and in popular medicine, so that it can be included in the list of phytoalimurgic plants. The present study aimed to investigate for the first time the plant's chemical profile, through a combined UHPLC-HR-ESI-Orbitrap/MS and NMR approach, and its potential healthy properties, focusing on antioxidant and anti-inflammatory activities. The LC-MS/MS analysis and the isolation through chromatographic techniques of the plant's hydroalcoholic extract allowed the authors to identify 48 compounds, including hydroxycinnamic acids, flavonoids, megastigmane glucosides, coumarins, and lignans, together with several unsaturated fatty acids. The quantitative analysis highlighted a relevant amount of flavonoids and hydroxycinnamic acids, with a total of 12.9 ± 0.4 mg/g DW. NMR-based chemical profiling revealed the presence of a good amount of amino acids and monosaccharides, and chicoric and chlorogenic acids as the most representative polyphenols. Finally, the antioxidant and anti-inflammatory activities of H. radiata were investigated through cell-free and cell-based assays, showing a good antioxidant potential for the plant extract and a significant reduction in COX-2 expression.

2.
Molecules ; 28(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38067642

RESUMO

(1) Background: almond peels are rich in polyphenols such as catechin and epicatechin, which are important anti-free-radical agents, anti-inflammatory compounds, and capable of breaking down cholesterol plaques. This work aims to evaluate the biological and technological activity of a "green" dry aqueous extract from Sicilian almond peels, a waste product of the food industry, and to develop healthy nutraceuticals with natural ingredients. Eudraguard® Natural is a natural coating polymer chosen to develop atomized formulations that improve the technological properties of the extract. (2) Methods: the antioxidant and free radical scavenger activity of the extract was rated using different methods (DPPH assay, ABTS, ORAC, NO). The metalloproteinases of the extracts (MMP-2 and MMP-9), the enhanced inhibition of the final glycation products, and the effects of the compounds on cell viability were also tested. All pure materials and formulations were characterized using UV, HPLC, FTIR, DSC, and SEM methods. (3) Results: almond peel extract showed appreciable antioxidant and free radical activity with a stronger NO inhibition effect, strong activity on MMP-2, and good antiglycative effects. In light of this, a food supplement with added health value was formulated. Eudraguard® Natural acted as a swelling substrate by improving extract solubility and dissolution/release (4) Conclusions: almond peel extract has significant antioxidant activity and MMP/AGE inhibition effects, resulting in an optimal candidate to formulate safe microsystems with potential antimetabolic activity. Eudraguard® Natural is capable of obtaining spray-dried microsystems with an improvement in the extract's biological and technological characteristics. It also protects the dry extract from degradation and oxidation, prolonging the shelf life of the final product.


Assuntos
Antioxidantes , Prunus dulcis , Antioxidantes/farmacologia , Antioxidantes/química , Metaloproteinase 2 da Matriz , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Suplementos Nutricionais , Radicais Livres/química
3.
J Pharmacol Toxicol Methods ; 123: 107298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37480964

RESUMO

Microsampling, a reduced volume sampling method, has successfully gained attention at the International Conference on Harmonization (ICH) level and established benefits support its use in Toxicokinetic (TK) studies. These improved sampling techniques are less invasive and in large animal species improve animal welfare (refinement). To evaluate if the plasma concentrations of drugs were influenced by the blood sampling method, the traditional method from femoral vein and microsampling from tail vein in Cynomolgus monkeys were compared. The pharmacokinetic parameters (Cmax, Tmax and AUC) of four drugs (selected based on acid-base and volume of distribution properties) in non-human primate were correlated. The plasma samples were quantified using standard LC-MS/MS methods, qualified to evaluate the precision and accuracy before the analysis of real samples. The results reported in this work demonstrated the suitability of microsampling in supporting PK/TK studies in non-human primates. The data show that the exposure of drugs tested after blood collection using standard procedure from femoral vein and microsampling from tail vein is correlated and is not influenced by acid-base characteristics and volume of distribution.


Assuntos
Coleta de Amostras Sanguíneas , Espectrometria de Massas em Tandem , Animais , Macaca fascicularis , Cromatografia Líquida , Coleta de Amostras Sanguíneas/métodos , Capilares
4.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108737

RESUMO

This study aimed to evaluate if Simvastatin can reduce, and/or prevent, Doxorubicin (Doxo)-induced cardiotoxicity. H9c2 cells were treated with Simvastatin (10 µM) for 4 h and then Doxo (1 µM) was added, and the effects on oxidative stress, calcium homeostasis, and apoptosis were evaluated after 20 h. Furthermore, we evaluated the effects of Simvastatin and Doxo co-treatment on Connexin 43 (Cx43) expression and localization, since this transmembrane protein forming gap junctions is widely involved in cardioprotection. Cytofluorimetric analysis showed that Simvastatin co-treatment significantly reduced Doxo-induced cytosolic and mitochondrial ROS overproduction, apoptosis, and cytochrome c release. Spectrofluorimetric analysis performed by means of Fura2 showed that Simvastatin co-treatment reduced calcium levels stored in mitochondria and restored cytosolic calcium storage. Western blot, immunofluorescence, and cytofluorimetric analyses showed that Simvastatin co-treatment significantly reduced Doxo-induced mitochondrial Cx43 over-expression and significantly increased the membrane levels of Cx43 phosphorylated on Ser368. We hypothesized that the reduced expression of mitochondrial Cx43 could justify the reduced levels of calcium stored in mitochondria and the consequent induction of apoptosis observed in Simvastatin co-treated cells. Moreover, the increased membrane levels of Cx43 phosphorylated on Ser368, which is responsible for the closed conformational state of the gap junction, let us to hypothesize that Simvastatin leads to cell-to-cell communication interruption to block the propagation of Doxo-induced harmful stimuli. Based on these results, we can conclude that Simvastatin could be a good adjuvant in Doxo anticancer therapy. Indeed, we confirmed its antioxidant and antiapoptotic activity, and, above all, we highlighted that Simvastatin interferes with expression and cellular localization of Cx43 that is widely involved in cardioprotection.


Assuntos
Antioxidantes , Conexina 43 , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Conexina 43/metabolismo , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Apoptose
5.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835664

RESUMO

Correct protein folding is the basis of cellular well-being; thus, accumulation of misfolded proteins within the endoplasmic reticulum (ER) leads to an imbalance of homeostasis that causes stress to the ER. Various studies have shown that protein misfolding is a significant factor in the etiology of many human diseases, including cancer, diabetes, and cystic fibrosis. Misfolded protein accumulation in the ER triggers a sophisticated signal transduction pathway, the unfolded protein response (UPR), which is controlled by three proteins, resident in ER: IRE1α, PERK, and ATF6. Briefly, when ER stress is irreversible, IRE1α induces the activation of pro-inflammatory proteins; PERK phosphorylates eIF2α which induces ATF4 transcription, while ATF6 activates genes encoding ER chaperones. Reticular stress causes an alteration of the calcium homeostasis, which is released from the ER and taken up by the mitochondria, leading to an increase in the oxygen radical species production, and consequently, to oxidative stress. Accumulation of intracellular calcium, in combination with lethal ROS levels, has been associated with an increase of pro-inflammatory protein expression and the initiation of the inflammatory process. Lumacaftor (Vx-809) is a common corrector used in cystic fibrosis treatment which enhances the folding of mutated F508del-CFTR, one of the most prevalent impaired proteins underlying the disease, promoting a higher localization of the mutant protein on the cell membrane. Here, we demonstrate that this drug reduces the ER stress and, consequently, the inflammation that is caused by such events. Thus, this molecule is a promising drug to treat several pathologies that present an etiopathogenesis due to the accumulation of protein aggregates that lead to chronic reticular stress.


Assuntos
Fibrose Cística , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Endorribonucleases/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , eIF-2 Quinase/metabolismo , Cálcio/metabolismo , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático/genética , Dobramento de Proteína
6.
Pharmaceutics ; 15(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678923

RESUMO

(1) Background: Eudraguard® Natural (EN) and Protect (EP) are polymers regulated for use in dietary supplements in the European Union and the United States to carry natural products, mask unpleasant smells and tastes, ameliorate product handling, and protect products from moisture, light, and oxidation. Moreover, EN and EP can control the release of encapsulated compounds. The aim of this work was the development, preparation, and control of Eudraguard® spray-drying microparticles to obtain powders with easy handling and a stable dietary supplement containing a polar functional extract (SOE) from Sorbus domestica L. leaves. (2) Methods: SOE was characterized using HPLC, NMR, FTIR, DSC, and SEM methods. Furthermore, the SOE's antioxidant/free radical scavenging activity, α-glucosidase inhibition, MTT assay effect on viability in normal cells, and shelf life were evaluated in both the extract and final formulations. (3) Results: The data suggested that SOE, rich in flavonoids, is a bioactive and safe extract; however, from a technological point of view, it was sticky, difficult to handle, and had low aqueous solubility. Despite the fact that EN and EP may undergo changes with spray-drying, they effectively produced easy-to-handle micro-powders with a controlled release profile. Although EN had a weaker capability to coat SOE than EP, EN acted as a substrate that was able to swell, drawing in water and improving the extract solubility and dissolution/release; however, EP was also able to carry the extract and provide SOE with controlled release. (4) Conclusion: Both Eudraguard® products were capable of carrying SOE and improving its antioxidant and α-glucosidase inhibition activities, as well as the extract stability and handling.

7.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742818

RESUMO

Human epidermal growth factor receptor-2 (HER2) is overexpressed in up to 30% of breast cancer cases, causing a more aggressive tumour growth and poor prognosis. Trastuzumab, the humanized antibody targeted to HER2, increased the life expectancy of patients, but severe cardiotoxicity emerged as a long-term adverse effect. Clinical evidence highlights that Trastuzumab-induced cardiotoxicity drastically increases in association with Doxorubicin; however, the exact mechanisms involved remain incompletely understood. In order to analyse the molecular mechanisms involved and the possible adaptative responses to Trastuzumab and Doxorubicin treatment, in this study, H9c2 cardiomyoblasts were used. Results showed that Trastuzumab and Doxorubicin sequential administration in cardiomyoblast increased cytosolic and mitochondrial ROS production, intracellular calcium dysregulation, mitochondrial membrane depolarization, and the consequent apoptosis, induced by both Trastuzumab and Doxorubicin alone. Furthermore, in these conditions, we observed increased levels of Connexin43 phosphorylated on Ser368 (pCx43). Since phosphorylation on Ser368 decreases gap junction intracellular communication, thus reducing the spread of death signals to adjacent cells, we hypothesized that the increase in pCx43 could be an adaptative response implemented by cells to defend neighbouring cells by Trastuzumab and Doxorubicin sequential administration. However, the other side of the coin is the resulting conduction abnormalities.


Assuntos
Neoplasias da Mama , Conexina 43 , Neoplasias da Mama/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Conexina 43/metabolismo , Doxorrubicina/efeitos adversos , Feminino , Humanos , Estresse Oxidativo , Fosforilação , Receptor ErbB-2/metabolismo , Trastuzumab/efeitos adversos
8.
J Nat Prod ; 85(3): 647-656, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35196017

RESUMO

Seven new terpenoids, namely, guaiane (1-4), eudesmane (5), and bisabolane (6) sesquiterpenoids and a furanone (7), were isolated from the aerial parts of Ammoides atlantica, a herbaceous plant growing in Algeria, together with eight known compounds. All metabolites were characterized by their 1D and 2D NMR and HRESIMS data. A combined DFT/NMR method was applied to study the relative configurations of 1-4, 6, and 7. All compounds, except 2, were assayed against MCF-7, A375, A549, HaCaT, and Jurkat cell lines. Compounds 8, 10, and 11 induced a dose-dependent reduction in cell viability with different potency on almost all cell lines used. The most active compounds, 8 and 10, were studied to assess their potential apoptotic effects and cell cycle inhibition.


Assuntos
Apiaceae , Sesquiterpenos , Argélia , Estrutura Molecular , Componentes Aéreos da Planta/química , Sesquiterpenos/química
9.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163936

RESUMO

The multidomain BAG3 protein is a member of the BAG (Bcl-2-associated athanogene) family of co-chaperones, involved in a wide range of protein-protein interactions crucial for many key cellular pathways, including autophagy, cytoskeletal dynamics, and apoptosis. Basal expression of BAG3 is elevated in several tumor cell lines, where it promotes cell survival signaling and apoptosis resistance through the interaction with many protein partners. In addition, its role as a key player of several hallmarks of cancer, such as metastasis, angiogenesis, autophagy activation, and apoptosis inhibition, has been established. Due to its involvement in malignant transformation, BAG3 has emerged as a potential and effective biological target to control multiple cancer-related signaling pathways. Recently, by using a multidisciplinary approach we reported the first synthetic BAG3 modulator interfering with its BAG domain (BD), based on a 2,4-thiazolidinedione scaffold and endowed with significant anti-proliferative activity. Here, a further in silico-driven selection of a 2,4-thiazolidinedione-based compound was performed. Thanks to a straightforward synthesis, relevant binding affinity for the BAG3BD domain, and attractive biological activities, this novel generation of compounds is of great interest for the development of further BAG3 binders, as well as for the elucidation of the biological roles of this protein in tumors. Specifically, we found compound 6 as a new BAG3 modulator with a relevant antiproliferative effect on two different cancer cell lines (IC50: A375 = 19.36 µM; HeLa = 18.67 µM).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Tiazolidinedionas/farmacologia , Antineoplásicos/química , Apoptose , Autofagia , Proliferação de Células , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Tiazolidinedionas/química , Células Tumorais Cultivadas
10.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769027

RESUMO

Hypoxia is the leading cause of death in cardiomyocytes. Cells respond to oxygen deprivation by activating cytoprotective programs, such as mitochondrial connexin43 (mCx43) overexpression and the opening of mitochondrial KATP channels, aimed to reduce mitochondrial dysfunction. In this study we used an in vitro model of CoCl2-induced hypoxia to demonstrate that mCx43 and KATP channels cooperate to induce cytoprotection. CoCl2 administration induces apoptosis in H9c2 cells by increasing mitochondrial ROS production, intracellular and mitochondrial calcium overload and by inducing mitochondrial membrane depolarization. Diazoxide, an opener of KATP channels, reduces all these deleterious effects of CoCl2 only in the presence of mCx43. In fact, our results demonstrate that in the presence of radicicol, an inhibitor of Cx43 translocation to mitochondria, the cytoprotective effects of diazoxide disappear. In conclusion, these data confirm that there exists a close functional link between mCx43 and KATP channels.


Assuntos
Conexina 43/metabolismo , Citoproteção/efeitos dos fármacos , Diazóxido/farmacologia , Hipóxia/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cobalto/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canais de Potássio/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
11.
Biomolecules ; 11(3)2021 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805605

RESUMO

Cystic fibrosis is a monogenic, autosomal, recessive disease characterized by an alteration of chloride transport caused by mutations in the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) gene. The loss of Phe residue in position 508 (ΔF508-CFTR) causes an incorrect folding of the protein causing its degradation and electrolyte imbalance. CF patients are extremely predisposed to the development of a chronic inflammatory process of the bronchopulmonary system. When the cells of a tissue are damaged, the immune cells are activated and trigger the production of free radicals, provoking an inflammatory process. In addition to routine therapies, today drugs called correctors are available for mutations such as ΔF508-CFTR as well as for others less frequent ones. These active molecules are supposed to facilitate the maturation of the mutant CFTR protein, allowing it to reach the apical membrane of the epithelial cell. Matrine induces ΔF508-CFTR release from the endoplasmic reticulum to cell cytosol and its localization on the cell membrane. We now have evidence that Matrine and Lumacaftor not only restore the transport of mutant CFTR protein, but probably also counteract the inflammatory process by improving the course of the disease.


Assuntos
Alcaloides/uso terapêutico , Aminopiridinas/uso terapêutico , Benzodioxóis/uso terapêutico , Fibrose Cística/tratamento farmacológico , Inflamação/patologia , Quinolizinas/uso terapêutico , Células A549 , Alcaloides/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Quinolizidinas/farmacologia , Quinolizinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Matrinas
12.
Front Immunol ; 11: 574029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193359

RESUMO

From Pauling's theories to the present, considerable understanding has been acquired of both the physiological role of vitamin C and of the impact of vitamin C supplementation on the health. Although it is well known that a balanced diet which satisfies the daily intake of vitamin C positively affects the immune system and reduces susceptibility to infections, available data do not support the theory that oral vitamin C supplements boost immunity. No current clinical recommendations support the possibility of significantly decreasing the risk of respiratory infections by using high-dose supplements of vitamin C in a well-nourished general population. Only in restricted subgroups (e.g., athletes or the military) and in subjects with a low plasma vitamin C concentration a supplementation may be justified. Furthermore, in categories at high risk of infection (i.e., the obese, diabetics, the elderly, etc.), a vitamin C supplementation can modulate inflammation, with potential positive effects on immune response to infections. The impact of an extra oral intake of vitamin C on the duration of a cold and the prevention or treatment of pneumonia is still questioned, while, based on critical illness studies, vitamin C infusion has recently been hypothesized as a treatment for COVID-19 hospitalized patients. In this review, we focused on the effects of vitamin C on immune function, summarizing the most relevant studies from the prevention and treatment of common respiratory diseases to the use of vitamin C in critical illness conditions, with the aim of clarifying its potential application during an acute SARS-CoV2 infection.


Assuntos
Ácido Ascórbico/imunologia , Ácido Ascórbico/uso terapêutico , Tratamento Farmacológico da COVID-19 , Resfriado Comum/tratamento farmacológico , Resfriado Comum/prevenção & controle , SARS-CoV-2 , Vitaminas/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácido Ascórbico/efeitos adversos , COVID-19/virologia , Criança , Pré-Escolar , Estado Terminal , Suplementos Nutricionais , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187371

RESUMO

Natural products black cumin-Nigella sativa (N. sativa) and wild garlic-Allium ursinum (AU) are known for their potential role in reducing cardiovascular risk factors, including antracycline chemotherapy. Therefore, this study investigates the effect of N. sativa and AU water and methanolic extracts in a cellular model of doxorubicin (doxo)-induced cardiotoxicity. The extracts were characterized using Ultraviolet-visible (UV-VIS) spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, Liquid Chromatography coupled with Mass Spectrometry (LC-MS) and Gas Chromatography coupled with Mass Spectrometry (GC-MS) techniques. Antioxidant activity was evaluated on H9c2 cells. Cytosolic and mitochondrial reactive oxygen species (ROS) release was evaluated using 2',7'-dichlorofluorescin-diacetate (DHCF-DA) and mitochondria-targeted superoxide indicator (MitoSOX red), respectively. Mitochondrial membrane depolarization was evaluated by flow cytometry. LC-MS analysis identified 12 and 10 phenolic compounds in NSS and AU extracts, respectively, with flavonols as predominant compounds. FT-IR analysis identified the presence of carbohydrates, amino acids and lipids in both plants. GC-MS identified the sulfur compounds in the AU water extract. N. sativa seeds (NSS) methanolic extract had the highest antioxidant activity reducing both intracellular and mitochondrial ROS release. All extracts (excepting AU methanolic extract) preserved H9c2 cells viability. None of the investigated plants affected the mitochondrial membrane depolarization. N. sativa and AU are important sources of bioactive compounds with increased antioxidant activities, requiring different extraction solvents to obtain the pharmacological effects.


Assuntos
Allium/química , Antioxidantes/química , Doxorrubicina/química , Mioblastos Cardíacos/efeitos dos fármacos , Nigella sativa/química , Extratos Vegetais/farmacologia , Animais , Cardiotoxicidade , Linhagem Celular , Sobrevivência Celular , Flavonóis/análise , Cromatografia Gasosa-Espectrometria de Massas , Potencial da Membrana Mitocondrial , Fenóis/farmacologia , Polifenóis/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Sementes/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Pharmaceutics ; 12(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708873

RESUMO

The administration of natural antioxidants is considered to be a prevention strategy for chronic diseases and a useful tool for the healthcare system to reduce the administration of expensive and often not effective treatments. The chemical characterization of a methanolic extract (AJ) of Ajuga reptans L. was performed, and its antioxidant activity was evaluated. AJ and the major compounds, characterized by chromatographic techniques as phenylpropanoids and iridoids, were able to reduce the Reactive Oxygen Species levels in cancer cell lines (melanoma, A375, cervical cancer, HeLa, and alveolar adenocarcinoma, A549), stimulated by E. coli lipopolysaccharide. However, a clinical translation of these results encountered a significant limitation represented by the poor water solubility and bioavailability of the extract and compounds. Consequently, a hydro-soluble powder system (AJEP3) was developed by spray-drying encapsulating AJ into a multi-component solid matrix that is based on L-proline and hydroxyethylcellulose as loading and coating agents, and lecithin as solubility enhancer. The technological approach led to a satisfactory process yield (71.5%), encapsulation efficiency (99.9%), and stability. The in vitro water dissolution rate of the bioactive compounds appeared to be improved with respect to the extract, suggesting higher feasibility in the manufacturing and administration; even the in vitro biological activity of the produced multi-component AJEP3 was clearly enhanced.

15.
Int J Mol Med ; 46(3): 1197-1209, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32705166

RESUMO

Oxidative stress is widely accepted as a key factor of doxorubicin (Doxo)­induced cardiotoxicity. There is evidence to indicate that nitrosative stress is involved in this process, and that Doxo interacts by amplifying cell damage. Mitochondrial connexin 43 (mitoCx43) can confer cardioprotective effects through the reduction of mitochondrial reactive oxygen species production during Doxo­induced cardiotoxicity. The present study aimed to evaluate the involvement of mitoCx43 in Doxo­induced nitrosative stress. Rat H9c2 cardiomyoblasts were treated with Doxo in the absence or presence of radicicol, an inhibitor of Hsp90, the molecular chaperone involved in Cx43 translocation to the mitochondria that underlies its role in cardioprotection. FACS analysis and RT­qPCR revealed that Doxo increased superoxide dismutase, and catalase gene and protein expression. As shown by hypodiploid nuclei and confirmed by western blot analysis, Doxo increased caspase 9 expression and reduced procaspase 3 levels, which induced cell death. Moreover, a significant increase in the activation of the NF­κB signaling pathway was observed. It is well known that the increased expression of inducible nitric oxide synthase results in nitric oxide overproduction, which then rapidly reacts with hydrogen peroxide or superoxide generated by the mitochondria, to form highly reactive and harmful peroxynitrite, which ultimately induces nitrotyrosine formation. Herein, these interactions were confirmed and increased effects were observed in the presence of radicicol. On the whole, the data of the present study indicate that an interplay between oxidative and nitrosative stress is involved in Doxo­induced cardiotoxicity, and that both aspects are responsible for the induction of apoptosis. Furthermore, it is demonstrated that the mechanisms that further increase mitochondrial superoxide generation (e.g., the inhibition of Cx43 translocation into the mitochondria) significantly accelerate the occurrence of cell death.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Conexina 43/metabolismo , Doxorrubicina/efeitos adversos , Mioblastos Cardíacos/efeitos dos fármacos , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Linhagem Celular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patologia , Ratos
16.
Toxicol In Vitro ; 67: 104926, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32599261

RESUMO

Trastuzumab, the humanized monoclonal antibody specific for HER2 receptor, is the gold standard in the treatment of HER2+ breast cancer. Despite its high therapeutic efficacy, cardiotoxicity has emerged as a significant side effect. The molecular mechanisms involved are not well understood, but all converge on mitochondria. Mitochondrial Cx43 can confer cardioprotection by regulating mitochondrial calcium homeostasis, ROS production and propagation of apoptotic signals, and studies report that it is overexpressed both in ischemic preconditioning and in Doxorubicin-induced cardiotoxicity. This study was designed to evaluate whether mitochondrial Cx43 (mCx43) is also involved in Trastuzumab-induced cardiotoxicity. Here we demonstrated that mCx43 is overexpressed in Trastuzumab-treated H9c2 cells. Our data showed that inhibition of Cx43 translocation to mitochondria, obtained by radicicol pre-treatment, significantly increases cytosolic and mitochondrial superoxide formation, mitochondrial membrane depolarization and the consequent apoptosis induced by Trastuzumab. Our results support the hypothesis that disruption of mitochondrial function is the principal mechanism by which Trastuzumab elicits its cardiotoxicity and mCx43 appears to counteract the Trastuzumab-induced mitochondrial damage.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Cardiotoxicidade/metabolismo , Conexina 43/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Trastuzumab/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
17.
Crit Rev Eukaryot Gene Expr ; 29(4): 295-304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31679291

RESUMO

Mitochondria represent the heart unit of the cardiac cell because they are involved in ATP production and in the transfer to the contractile apparatus. Furthermore, mitochondria modulate Ca2+ homeostasis, manage redox status, and regulate response to cellular and environmental stresses. Abnormalities in mitochondrial organelle structure and function have been observed in many cardiovascular diseases, such as ischemic cardiomyopathy, heart failure, and stroke, and in drug-induced cardiomyopathies. This review summarizes the recent literature in this field.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Animais , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo
18.
Planta Med ; 85(11-12): 1024-1033, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31261420

RESUMO

Halimium halimifolium (Hh) is a shrub used in Algerian folk medicine to treat gastrointestinal pain. An UHPLC-PDA-ESI/MSn method was developed to identify the metabolic profile of the traditionally used infusion (Hh-A) from the aerial parts. The structures of flavanols were confirmed by NMR analysis after the isolation procedure from a hydrohalcolic extract (Hh-B) that also allowed for the identification of phenolic acids, an aryl butanol glucoside, and different derivatives of quercetin, myricetin, and kaempferol. Tiliroside isomers were the chemical markers of Hh-A and Hh-B (54.33 and 36.00 mg/g, respectively). Hh-A showed a significant scavenging activity both against the radicals 1,1-diphenyl-2-picrylhydrazyl and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (EC50 = 10.49 µg/mL and TEAC value = 1.98 mM Trolox/mg infusion) and the lipopolysaccharide-induced reactive oxygen species release in A375 and HeLa cells. Moreover, the antihyperglycemic properties, by inhibiting the α-amylase and α-glucosidase enzymes (IC50 = 0.82 mg/mL and 25.01 µg/mL, respectively), were demonstrated. To upgrade the therapeutic effect, a microencapsulation process is proposed as a strategy to optimize stability, handling, and delivery of bioactive components, avoiding the degradation and loss of the biological efficacy after oral intake. Hh-loaded microparticles were designed using cellulose acetate phthalate as the enteric coating material and spray drying as a production process. The results showed a satisfactory process yield (67.9%), encapsulation efficiency (96.7%), and micrometric characteristics of microparticles (laser-scattering, fluorescent, and scanning electron microscopy). In vitro dissolution studies (USPII-pH change method) showed that Hh-loaded microparticles are able to prevent the release and degradation of the bioactive components in the gastric tract, releasing them into the intestinal environment.


Assuntos
Cistaceae/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular , Cistaceae/metabolismo , Suplementos Nutricionais , Composição de Medicamentos , Células HeLa , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Espectroscopia de Ressonância Magnética , Medicinas Tradicionais Africanas , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Plantas Medicinais/metabolismo
19.
Int J Mol Sci ; 20(7)2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959745

RESUMO

Heart failure is a complex clinical syndrome involving a multitude of neurohormonal pathways including the renin-angiotensin-aldosterone system, sympathetic nervous system, and natriuretic peptides system. It is now emerging that neurohumoral mechanisms activated during heart failure, with both preserved and reduced ejection fraction, modulate cells of the immune system. Indeed, these cells express angiotensin I receptors, adrenoceptors, and natriuretic peptides receptors. Ang II modulates macrophage polarization, promoting M2 macrophages phenotype, and this stimulation can influence lymphocytes Th1/Th2 balance. ß-AR activation in monocytes is responsible for inhibition of free oxygen radicals production, and together with α2-AR can modulate TNF-α receptor expression and TNF-α release. In dendritic cells, activation of ß2-AR inhibits IL-12 production, resulting in the inhibition of Th1 and promotion of Th2 differentiation. ANP induces the activation of secretion of superoxide anion in polymorphonucleated cells; reduces TNF-α and nitric oxide secretion in macrophages; and attenuates the exacerbated TH1 responses. BNP in macrophages can stimulate ROS production, up-regulates IL-10, and inhibits IL-12 and TNF-α release by dendritic cells, suggesting an anti-inflammatory cytokines profile induction. Therefore, different neurohormonal-immune cross-talks can determine the phenotype of cardiac remodeling, promoting either favorable or maladaptive responses. This review aims to summarize the available knowledge on neurohormonal modulation of immune responses, providing supportive rational background for further research.


Assuntos
Insuficiência Cardíaca/imunologia , Sistema Imunitário/metabolismo , Neurotransmissores/metabolismo , Animais , Humanos , Imunomodulação , Modelos Biológicos , Pesquisa Translacional Biomédica
20.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518932

RESUMO

Doxorubicin (DOXO) administration induces alterations in Connexin 43 (Cx43) expression and localization, thus, inducing alterations in chemical and electrical signal transmission between cardiomyocytes and in intracellular calcium homeostasis even evident after a single administration. This study was designed to evaluate if Diazoxide (DZX), a specific opener of mitochondrial KATP channels widely used for its cardioprotective effects, can fight DOXO-induced cardiotoxicity in a short-time mouse model. DZX (20 mg/kg i.p.) was administered 30 min before DOXO (10 mg/kg i.p.) in C57BL/6j female mice for 1-3 or seven days once every other day. A recovery of cardiac parameters, evaluated by Echocardiography, were observed in DZX+DOXO co-treated mice. Western blot analysis performed on heart lysates showed an increase in sarco/endoplasmic reticulum Ca2+-ATPase (SERCAII) and a reduction in phospholamban (PLB) amounts in DZX+DOXO co-treated mice. A contemporary recovery of intracellular Ca2+-signal, detected spectrofluorometrically by means of FURA-2AM, was observed in these mice. Cx43 expression and localization, analyzed by Western blot and confirmed by immunofluorescence analysis, showed that DZX co-treatement increases Cx43 amount both on sarcoplasmic membrane and on mitochondria. In conclusion, our data demonstrate that, in a short-time mouse model of DOXO-induced cardiotoxicity, DZX exerts its cardioprotective effects also by enhancing the amount Cx43.


Assuntos
Cardiotoxicidade , Conexina 43/genética , Diazóxido/farmacologia , Doxorrubicina/efeitos adversos , Expressão Gênica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Substâncias Protetoras/farmacologia , Animais , Cálcio/metabolismo , Conexina 43/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Cardiopatias/diagnóstico , Cardiopatias/tratamento farmacológico , Cardiopatias/etiologia , Cardiopatias/fisiopatologia , Testes de Função Cardíaca , Homeostase , Camundongos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...