Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 478(3): 619-632, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33427868

RESUMO

Sulfur-containing amino acid residues function in antioxidative responses, which can be induced by the reactive oxygen species generated by excessive copper and hydrogen peroxide. In all Na+/K+, Ca2+, and H+ pumping P-type ATPases, a cysteine residue is present two residues upstream of the essential aspartate residue, which is obligatorily phosphorylated in each catalytic cycle. Despite its conservation, the function of this cysteine residue was hitherto unknown. In this study, we analyzed the function of the corresponding cysteine residue (Cys-327) in the autoinhibited plasma membrane H+-ATPase isoform 2 (AHA2) from Arabidopsis thaliana by mutagenesis and heterologous expression in a yeast host. Enzyme kinetics of alanine, serine, and leucine substitutions were identical with those of the wild-type pump but the sensitivity of the mutant pumps was increased towards copper and hydrogen peroxide. Peptide identification and sequencing by mass spectrometry demonstrated that Cys-327 was prone to oxidation. These data suggest that Cys-327 functions as a protective residue in the plasma membrane H+-ATPase, and possibly in other P-type ATPases as well.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Cisteína/química , ATPases Translocadoras de Prótons/química , Alquilação , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Arabidopsis/antagonistas & inibidores , Sequência Conservada , Cobre/metabolismo , Peróxido de Hidrogênio/metabolismo , Iodoacetamida/farmacologia , Cinética , Microssomos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Domínios Proteicos , ATPases Translocadoras de Prótons/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
2.
Nat Commun ; 11(1): 2395, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409656

RESUMO

Pollen tubes are highly polarized tip-growing cells that depend on cytosolic pH gradients for signaling and growth. Autoinhibited plasma membrane proton (H+) ATPases (AHAs) have been proposed to energize pollen tube growth and underlie cell polarity, however, mechanistic evidence for this is lacking. Here we report that the combined loss of AHA6, AHA8, and AHA9 in Arabidopsis thaliana delays pollen germination and causes pollen tube growth defects, leading to drastically reduced fertility. Pollen tubes of aha mutants had reduced extracellular proton (H+) and anion fluxes, reduced cytosolic pH, reduced tip-to-shank proton gradients, and defects in actin organization. Furthermore, mutant pollen tubes had less negative membrane potentials, substantiating a mechanistic role for AHAs in pollen tube growth through plasma membrane hyperpolarization. Our findings define AHAs as energy transducers that sustain the ionic circuit defining the spatial and temporal profiles of cytosolic pH, thereby controlling downstream pH-dependent mechanisms essential for pollen tube elongation, and thus plant fertility.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Polinização/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Polaridade Celular/fisiologia , Citosol/metabolismo , Técnicas de Silenciamento de Genes , Germinação/fisiologia , Concentração de Íons de Hidrogênio , Potenciais da Membrana/fisiologia , Mutação , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ATPases Translocadoras de Prótons/genética , Análise Espaço-Temporal
3.
Physiol Plant ; 166(3): 848-861, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30238999

RESUMO

Plasma membrane H+ -ATPase pumps build up the electrochemical H+ gradients that energize most other transport processes into and out of plant cells through channel proteins and secondary active carriers. In Arabidopsis thaliana, the AUTOINHIBITED PLASMA MEMBRANE H+ -ATPases AHA1, AHA2 and AHA7 are predominant in root epidermal cells. In contrast to other H+ -ATPases, we find that AHA7 is autoinhibited by a sequence present in the extracellular loop between transmembrane segments 7 and 8. Autoinhibition of pump activity was regulated by extracellular pH, suggesting negative feedback regulation of AHA7 during establishment of an H+ gradient. Due to genetic redundancy, it has proven difficult to test the role of AHA2 and AHA7, and mutant phenotypes have previously only been observed under nutrient stress conditions. Here, we investigated root and root hair growth under normal conditions in single and double mutants of AHA2 and AHA7. We find that AHA2 drives root cell expansion during growth but that, unexpectedly, restriction of root hair elongation is dependent on AHA2 and AHA7, with each having different roles in this process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Concentração de Íons de Hidrogênio , Mutação , ATPases Translocadoras de Prótons/genética
4.
Front Plant Sci ; 8: 2005, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29230231

RESUMO

PSY1R is a leucine-rich repeat (LRR) receptor-like kinase (RLK) previously shown to act as receptor for the plant peptide hormone PSY1 (peptide containing sulfated tyrosine 1) and to regulate cell expansion. PSY1R phosphorylates and thereby regulates the activity of plasma membrane-localized H+-ATPases. While this mechanism has been studied in detail, little is known about how PSY1R itself is activated. Here we studied the activation mechanism of PSY1R. We show that full-length PSY1R interacts with members of the SERK co-receptor family in planta. We identified seven in vitro autophosphorylation sites on serine and threonine residues within the kinase domain of PSY1R using mass spectrometry. We furthermore show that PSY1R autophosphorylation occurs in trans and that the initial transphosphorylation takes place within the activation loop at residues Ser951, Thr959, and Thr963. While Thr959 and Thr963 are conserved among other related plant LRR RLKs, Ser951 is unique to PSY1R. Based on homology modeling we propose that phosphorylation of Ser951 stabilize the inactive conformation of PSY1R.

5.
Cell Rep ; 20(12): 2784-2791, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930675

RESUMO

Signaling networks are nonlinear and complex, involving a large ensemble of dynamic interaction states that fluctuate in space and time. However, therapeutic strategies, such as combination chemotherapy, rarely consider the timing of drug perturbations. If we are to advance drug discovery for complex diseases, it will be essential to develop methods capable of identifying dynamic cellular responses to clinically relevant perturbations. Here, we present a Bayesian dose-response framework and the screening of an oncological drug matrix, comprising 10,000 drug combinations in melanoma and pancreatic cancer cell lines, from which we predict sequentially effective drug combinations. Approximately 23% of the tested combinations showed high-confidence sequential effects (either synergistic or antagonistic), demonstrating that cellular perturbations of many drug combinations have temporal aspects, which are currently both underutilized and poorly understood.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/análise , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Teorema de Bayes , Contagem de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Reprodutibilidade dos Testes , Fatores de Tempo
6.
Funct Plant Biol ; 44(5): 473-479, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32480580

RESUMO

The purpose of this minireview is to discuss the feasibility of creating a new generation of salt-tolerant plants that express Na+/K+-ATPases from animals or green algae. Attempts to generate salt-tolerant plants have focussed on increase the expression of or introducing salt stress-related genes from plants, bryophytes and yeast. Even though these approaches have resulted in plants with increased salt tolerance, plant growth is decreased under salt stress and often also under normal growth conditions. New strategies to increase salt tolerance are therefore needed. Theoretically, plants transformed with an animal-type Na+/K+-ATPase should not only display a high degree of salt tolerance but should also reduce the stress response exhibited by the first generation of salt-tolerant plants under both normal and salt stress conditions. The biological feasibility of such a strategy of producing transgenic plants that display improved growth on saline soil but are indistinguishable from wild-type plants under normal growth conditions, is discussed.

7.
EMBO Rep ; 16(10): 1394-408, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26323721

RESUMO

Cancer-associated fibroblasts (CAFs) interact with tumour cells and promote growth and metastasis. Here, we show that CAF activation is reversible: chronic hypoxia deactivates CAFs, resulting in the loss of contractile force, reduced remodelling of the surrounding extracellular matrix and, ultimately, impaired CAF-mediated cancer cell invasion. Hypoxia inhibits prolyl hydroxylase domain protein 2 (PHD2), leading to hypoxia-inducible factor (HIF)-1α stabilisation, reduced expression of αSMA and periostin, and reduced myosin II activity. Loss of PHD2 in CAFs phenocopies the effects of hypoxia, which can be prevented by simultaneous depletion of HIF-1α. Treatment with the PHD inhibitor DMOG in an orthotopic breast cancer model significantly decreases spontaneous metastases to the lungs and liver, associated with decreased tumour stiffness and fibroblast activation. PHD2 depletion in CAFs co-injected with tumour cells similarly prevents CAF-induced metastasis to lungs and liver. Our data argue that reversion of CAFs towards a less active state is possible and could have important clinical implications.


Assuntos
Hipóxia Celular , Fibroblastos/fisiologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/deficiência , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias Mamárias Experimentais/patologia , Metástase Neoplásica , Células Estromais/fisiologia , Aminoácidos Dicarboxílicos/farmacologia , Animais , Mama/citologia , Moléculas de Adesão Celular/genética , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Mamárias Experimentais/fisiopatologia , Camundongos , Miosina Tipo II/metabolismo , Invasividade Neoplásica , Técnicas de Cultura de Órgãos , Células Tumorais Cultivadas
8.
Exp Gerontol ; 48(11): 1274-84, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23916840

RESUMO

BACKGROUND/AIM: Age-related metabolic diseases are often associated with low-grade inflammation. The aim of the present study was to investigate the role of the transcriptional co-activator PGC-1α in the potential beneficial effects of exercise training and/or resveratrol in the prevention of age-associated low-grade inflammation. To address this, a long-term voluntary exercise training and resveratrol supplementation study was conducted. EXPERIMENTAL SETUP: Three month old whole body PGC-1α KO and WT mice were randomly assigned to four groups: untrained chow-fed, untrained chow-fed supplemented with resveratrol, chow-fed voluntarily exercise trained and chow-fed supplemented with resveratrol and voluntarily exercise trained. The intervention lasted 12 months and three month old untrained chow-fed mice served as young controls. RESULTS: Voluntary exercise training prevented an age-associated increase (p<0.05) in systemic IL-6 and adiposity in WT mice. PGC-1α expression was required for a training-induced prevention of an age-associated increase (p<0.05) in skeletal muscle TNFα protein. Independently of PGC-1α, both exercise training and resveratrol prevented an age-associated increase (p<0.05) in skeletal muscle protein carbonylation. CONCLUSION: The present findings highlight that exercise training is a more effective intervention than resveratrol supplementation in reducing age-associated inflammation and that PGC-1α in part is required for the exercise training-induced anti-inflammatory effects.


Assuntos
Envelhecimento/fisiologia , Inflamação/prevenção & controle , Condicionamento Físico Animal/fisiologia , Estilbenos/farmacologia , Fatores de Transcrição/fisiologia , Envelhecimento/patologia , Animais , Antioxidantes/farmacologia , Feminino , Inflamação/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Carbonilação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resveratrol , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...