Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Clin Endocrinol Metab ; 108(9): e671-e678, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036819

RESUMO

BACKGROUND: Active acromegaly is characterized by increased lean body mass, but the mechanisms underlying the protein anabolic effect are unclear. AIM: To study if active acromegaly induces reversible changes in whole-body and skeletal muscle protein kinetics. PATIENTS AND METHODS: Eighteen patients with acromegaly were investigated before and 47 ± 10 weeks after disease control by surgery (n = 8) and/or medical treatment (n = 10). Labeled phenylalanine and tyrosine tracers were employed to assess whole-body and regional forearm muscle protein kinetics. Intramyocellular protein signaling was assessed in skeletal muscle biopsies, and whole-body dual-energy X-ray absorptiometry scan and indirect calorimetry assessed lean body mass (LBM) and resting energy expenditure, respectively. RESULTS: Disease control induced a 7% decrease in lean body mass (P < .000) and a 14% decrease in LBM-adjusted energy expenditure. Whole-body phenylalanine breakdown decreased after disease control (P = .005) accompanied by a decrease in the degradation of phenylalanine to tyrosine (P = .005) and a decrease in whole-body phenylalanine synthesis (P = .030). Skeletal muscle protein synthesis tended to decrease after disease control (P = .122), whereas the muscle protein breakdown (P = .437) and muscle protein loss were unaltered (P = .371). Unc-51 like autophagy activating kinase 1 phosphorylation, an activator of protein breakdown, increased after disease control (P = .042). CONCLUSIONS: Active acromegaly represents a reversible high flux state in which both whole-body protein breakdown and synthesis are increased, whereas forearm muscle protein kinetics are unaltered. Future studies are needed to decipher the link between protein kinetics and the structure and function of the associated growth hormone-induced increase in lean body mass.


Assuntos
Acromegalia , Humanos , Acromegalia/terapia , Acromegalia/metabolismo , Antebraço , Tirosina , Fenilalanina , Proteínas Musculares/metabolismo , Composição Corporal/fisiologia , Metabolismo Energético/fisiologia , Músculo Esquelético/metabolismo
2.
Nat Metab ; 4(11): 1459-1473, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344764

RESUMO

Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis1. Aside from cAMP signalling downstream of ß-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α1-adrenergic receptor (AR) and ß3-AR signalling induces the expression of thermogenic genes of the futile creatine cycle2,3, and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α1-AR subtype (ADRA1A) and Gαq to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gαq and Gαs signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A-Gαq-futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis.


Assuntos
Creatina , Termogênese , Creatina/metabolismo , Termogênese/genética , Adipócitos/metabolismo , Metabolismo Energético/genética , Creatina Quinase/metabolismo
3.
Front Genet ; 13: 928874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938026

RESUMO

Purpose: The landscape of circular RNAs (circRNAs), an important class of non-coding RNAs that regulate gene expression, has never been described in human disorders of sex chromosome aneuploidies. We profiled circRNAs in Turner syndrome females (45,X; TS) and Klinefelter syndrome males (47,XXY; KS) to investigate how circRNAs respond to a missing or an extra X chromosome. Methods: Samples of blood, muscle and fat were collected from individuals with TS (n = 33) and KS (n = 22) and from male (n = 16) and female (n = 44) controls. CircRNAs were identified using a combination of circRNA identification pipelines (CIRI2, CIRCexplorer2 and circRNA_finder). Results: Differential expression of circRNAs was observed throughout the genome in TS and KS, in all tissues. The host-genes from which several of these circRNAs were derived, were associated with known phenotypic traits. Furthermore, several differentially expressed circRNAs had the potential to capture micro RNAs that targeted protein-coding genes with altered expression in TS and KS. Conclusion: Sex chromosome aneuploidies introduce changes in the circRNA transcriptome, demonstrating that the genomic changes in these syndromes are more complex than hitherto thought. CircRNAs may help explain some of the genomic and phenotypic traits observed in these syndromes.

4.
EBioMedicine ; 75: 103763, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34929488

RESUMO

BACKGROUND: Patients with active acromegaly exhibit insulin resistance despite a lean phenotype whereas controlled disease improves insulin sensitivity and increases fat mass. The mechanisms underlying this paradox remain elusive, but growth hormone (GH)-induced lipolysis plays a central role. The aim of the study was to investigative the molecular mechanisms of insulin resistance dissociated from obesity in patients with acromegaly. METHODS: In a prospective study, twenty-one patients with newly diagnosed acromegaly were studied at diagnosis and after disease control obtained by either surgery alone (n=10) or somatostatin analogue (SA) treatment (n=11) with assessment of body composition (DXA scan), whole body and tissue-specific insulin sensitivity and GH and insulin signalling in adipose tissue and skeletal muscle. FINDINGS: Disease control of acromegaly significantly reduced lean body mass (p<0.001) and increased fat mass (p<0.001). At diagnosis, GH signalling (pSTAT5) was constitutively activated in fat and enhanced expression of GH-regulated genes (CISH and IGF-I) were detected in muscle and fat. Insulin sensitivity in skeletal muscle, liver and adipose tissue increased after disease control regardless of treatment modality. This was associated with enhanced insulin signalling in both muscle and fat including downregulation of phosphatase and tensin homolog (PTEN) together with reduced signalling of GH and lipolytic activators in fat. INTERPRETATION: In conclusion, the study support that uncontrolled lipolysis is a major feature of insulin resistance in active acromegaly, and is characterized by upregulation of PTEN and suppression of insulin signalling in both muscle and fat. FUNDING: This work was supported by a grant from the Independent Research Fund, Denmark (7016-00303A) and from the Alfred Benzon Foundation, Denmark.


Assuntos
Acromegalia , Resistência à Insulina , Síndrome Metabólica , Acromegalia/complicações , Acromegalia/metabolismo , Tecido Adiposo/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Músculo Esquelético/metabolismo , Estudos Prospectivos
5.
Cell Metab ; 33(11): 2201-2214.e11, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34678202

RESUMO

Type 2 diabetes mellitus (T2DM) is associated with impaired skeletal muscle function and degeneration of the skeletal muscles. However, the mechanisms underlying the degeneration are not well described in human skeletal muscle. Here we show that skeletal muscle of T2DM patients exhibit degenerative remodeling of the extracellular matrix that is associated with a selective increase of a subpopulation of fibro-adipogenic progenitors (FAPs) marked by expression of THY1 (CD90)-the FAPCD90+. We identify platelet-derived growth factor (PDGF) as a key FAP regulator, as it promotes proliferation and collagen production at the expense of adipogenesis. FAPsCD90+ display a PDGF-mimetic phenotype, with high proliferative activity, clonogenicity, and production of extracellular matrix. FAPCD90+ proliferation was reduced by in vitro treatment with metformin. Furthermore, metformin treatment reduced FAP content in T2DM patients. These data identify a PDGF-driven conversion of a subpopulation of FAPs as a key event in the fibrosis development in T2DM muscle.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Musculares , Adipogenia , Diferenciação Celular , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Doenças Musculares/metabolismo
6.
Am J Physiol Cell Physiol ; 321(2): C257-C268, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34106790

RESUMO

Animal models clearly illustrate that the maintenance of skeletal muscle mass depends on the function and interaction of a heterogeneous population of resident and infiltrating mononuclear cells. Several lines of evidence suggest that mononuclear cells also play a role in muscle wasting in humans, and targeting these cells may open new treatment options for intervention or prevention in sarcopenia. Methodological and ethical constraints have perturbed exploration of the cellular characteristics and function of mononuclear cells in human skeletal muscle. Thus, investigations of cellular phenotypes often depend on immunohistochemical analysis of small tissue samples obtained by needle biopsies, which do not match the deep phenotyping of mononuclear cells obtained from animal models. Here, we have developed a protocol for fluorescence-activated cell sorting (FACS), based on single-cell RNA-sequencing data, for quantifying and characterizing mononuclear cell populations in human skeletal muscle. Muscle stem cells, fibro-adipogenic progenitors, and two subsets of macrophages (CD11c+/-) are present in needle biopsies in comparable quantities per milligram tissue to open surgical biopsies. We find that direct cell isolation is preferable due to a substantial shift in transcriptome when using preculture before the FACS procedure. Finally, in vitro validation of the cellular phenotype of muscle stem cells, fibro-adipogenic progenitors, and macrophages confirms population-specific traits. This study demonstrates that mononuclear cell populations can be quantified and subsequently analyzed from needle biopsy material and opens the perspective for future clinical studies of cellular mechanisms in muscle wasting.


Assuntos
Biópsia , Diferenciação Celular/fisiologia , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia , Adipogenia/fisiologia , Biópsia/métodos , Separação Celular/métodos , Citometria de Fluxo/métodos , Humanos , Macrófagos/citologia
7.
Eur J Endocrinol ; 184(5): 687-697, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33683213

RESUMO

OBJECTIVE: Activation of brown adipose tissue is a promising strategy to treat and prevent obesity and obesity-related disorders. Activation of uncoupling protein 1 (UCP1) leads to uncoupled respiration and dissipation of stored energy as heat. Induction of UCP1-rich adipocytes in white adipose tissue, a process known as 'browning', serves as an alternative strategy to increase whole body uncoupling capacity. Here, we aim to assess the association between parathyroid hormone (PTH) receptor expression and UCP1 expression in human adipose tissues and to study PTH effects on human white and brown adipocyte lipolysis and UCP1 expression. DESIGN: A descriptive study of human neck adipose tissue biopsies substantiated by an interventional study on human neck-derived adipose tissue cell models. METHODS: Thermogenic markers and PTH receptor gene expression are assessed in human neck adipose tissue biopsies and are related to individual health records. PTH-initiated lipolysis and thermogenic gene induction are assessed in cultured human white and brown adipocyte cell models. PTH receptor involvement is investigated by PTH receptor silencing. RESULTS: PTH receptor gene expression correlates with UCP1 gene expression in the deep-neck adipose tissue in humans. In cell models, PTH receptor stimulation increases lipolysis and stimulates gene transcription of multiple thermogenic markers. Silencing of the PTH receptor attenuates the effects of PTH indicating a direct PTH effect via this receptor. CONCLUSION: PTH 1 receptor stimulation by PTH may play a role in human adipose tissue metabolism by affecting lipolysis and thermogenic capacity.


Assuntos
Adipócitos/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Termogênese/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Desacopladora 1/metabolismo , Adulto Jovem
8.
Diabetologia ; 63(12): 2641-2653, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32945898

RESUMO

AIMS/HYPOTHESIS: Growth hormone (GH) causes insulin resistance that is linked to lipolysis, but the underlying mechanisms are unclear. We investigated if GH-induced insulin resistance in skeletal muscle involves accumulation of diacylglycerol (DAG) and ceramide as well as impaired insulin signalling, or substrate competition between fatty acids and glucose. METHODS: Nine GH-deficient male participants were randomised and examined in a 2 × 2 factorial design with and without administration of GH and acipimox (an anti-lipolytic compound). As-treated analyses were performed, wherefore data from three visits from two patients were excluded due to incorrect GH administration. The primary outcome was insulin sensitivity, expressed as the AUC of the glucose infusion rate (GIRAUC), and furthermore, the levels of DAGs and ceramides, insulin signalling and the activity of the active form of pyruvate dehydrogenase (PDHa) were assessed in skeletal muscle biopsies obtained in the basal state and during a hyperinsulinaemic-euglycaemic clamp (HEC). RESULTS: Co-administration of acipimox completely suppressed the GH-induced elevation in serum levels of NEFA (GH versus GH+acipimox, p < 0.0001) and abrogated GH-induced insulin resistance (mean GIRAUC [95% CI] [mg min-1 kg-1] during the HEC: control, 595 [493, 718]; GH, 468 [382, 573]; GH+acipimox, 654 [539, 794]; acipimox, 754 [618, 921]; GH vs GH+acipimox: p = 0.004). GH did not significantly change either the accumulation of DAGs and ceramides or insulin signalling in skeletal muscle, but GH antagonised the insulin-stimulated increase in PDHa activity (mean ± SEM [% from the basal state to the HEC]: control, 47 ± 19; GH, -15 ± 21; GH+acipimox, 3 ± 21; acipimox, 57 ± 22; main effect: p = 0.02). CONCLUSIONS/INTERPRETATION: GH-induced insulin resistance in skeletal muscle is: (1) causally linked to lipolysis; (2) not associated with either accumulation of DAGs and ceramides or impaired insulin signalling; (3) likely to involve substrate competition between glucose and lipid intermediates. TRIAL REGISTRATION: ClinicalTrials.gov NCT02782208 FUNDING: The work was supported by the Grant for Growth Innovation (GGI), which was funded by Merck KGaA, Darmstadt, Germany. Graphical abstract.


Assuntos
Resistência à Insulina/fisiologia , Lipólise/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Calorimetria Indireta , Ceramidas/metabolismo , Diglicerídeos/metabolismo , Eletroforese Capilar , Hormônio do Crescimento/farmacologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Masculino , Reação em Cadeia da Polimerase , Pirazinas/farmacologia
9.
Surg Obes Relat Dis ; 16(9): 1179-1185, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32576515

RESUMO

BACKGROUND: Postprandial hypoglycemia is a relatively common complication after Roux-en-Y gastric bypass (RYGB). The cause remains incompletely understood, and the association between biochemical hypoglycemia and hypoglycemic symptoms is unclear. OBJECTIVES: To evaluate the association between postprandial hormonal responses and biochemical and symptomatic hypoglycemia after RYGB. SETTING: University Hospital, Denmark. METHODS: A case-control study with 3 groups: (1) RYGB group with postprandial hypoglycemic symptoms (HS), n = 13; (2) RYGB-group with no symptoms of hypoglycemia (NHS), n = 13; and (3) nonoperated body mass index-matched controls (CON), n = 7. Plasma glucose (PG) and hormonal responses (insulin, glucagon-like peptide-1, gastric inhibitory polypeptide, glucagon) were measured after a mixed meal test (MMT), and hypoglycemic symptoms were determined by a questionnaire. The primary outcomes were differences in subjective and biochemical responses related to hypoglycemia among the 3 groups. RESULTS: Nadir PG was lower (3.1 versus 4.0 mmol/L (56 versus 72 mg/dL); P = .0002) and peak insulin higher in HS than NHS patients (1073 versus 734 pmol/L; P = .0499). Of the 13 patients with a peak insulin >850 pmol/L, 8 patients developed symptoms whereas only 2 out of the 13 patients with peak insulin ≤850 pmol/L developed symptoms, corresponding to an odds ratio of 12 (1.8; 81.7). Post hoc analyses comparing all RYGB patients with biochemical hypoglycemia after the MMT (nadir glucose ≤3.0 mmol/L [54 mg/dL]) with those with glucose >3 mmol/L (54 mg/dL) revealed a difference in both peak insulin (1138 versus 760 pmol/L; P = .042) and peak glucagon-like peptide-1 (182 versus 86 pmol/L; P = .016) concentrations. CONCLUSIONS: Patients with HS had lower nadir PG and higher insulin responses than NHS patients after MMT. Regarding PG, PG ≤3.0 mmol/L (54 mg/dL) was the best discriminator of having hypoglycemic symptoms after the MMT. However, high insulin level seems the most important predictor for having both biochemical and symptomatic hypoglycemia.


Assuntos
Derivação Gástrica , Hipoglicemia , Obesidade Mórbida , Glicemia , Estudos de Casos e Controles , Derivação Gástrica/efeitos adversos , Humanos , Hipoglicemia/etiologia , Insulina , Obesidade Mórbida/cirurgia
10.
J Clin Endocrinol Metab ; 105(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31544947

RESUMO

BACKGROUND: Fibroblast growth factor 21 (FGF21) is a circulating hormone with pleiotropic metabolic effects, which is inactivated by fibroblast activation protein (FAP). Data regarding interaction between FGF21, FAP, and growth hormone (GH) are limited, but it is noteworthy that collagens are also FAP substrates, since GH potently stimulates collagen turnover. AIM: To measure circulating FGF21 components, including FAP, in patients with acromegaly before and after disease control. METHODS: Eighteen patients with active acromegaly were studied at the time of diagnosis and ≥ 6 months after disease control by either surgery or medical treatment. Serum levels of total and active FGF21, ß-klotho, FAP, and collagen turnover markers were measured by immunoassays. Expression of putative FGF21-dependent genes were measured in adipose tissue by reverse transcriptase-polymerase chain reaction, body composition assessed by dual-energy x-ray absorptiometry scan, and insulin sensitivity estimated with homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS: Total FGF21, active FGF21 and ß-klotho remained unchanged. Insulin sensitivity and body fat mass increased after disease control but neither correlated with active FGF21. Expression of FGF21-dependent genes did not change after treatment. FAP levels (µg/L) were markedly reduced after treatment [105.6 ± 29.4 vs 62.2 ± 32.4, P < 0.000]. Collagen turnover markers also declined significantly after treatment and ΔFAP correlated positively with ΔProcollagen Type I (P < 0.000) and Type III (P < 0.000). CONCLUSION: 1) Circulating FGF21 and ß-klotho do not change in response to acromegaly treatment, 2) FAP concentrations in serum decrease after disease control and correlate positively with collagen turnover markers, and 3) FAP is a hitherto unrecognized GH target linked to collagen turnover. CLINICAL TRIALS REGISTRATION: NCT00647179.


Assuntos
Acromegalia/metabolismo , Biomarcadores/metabolismo , Colágeno/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Gelatinases/metabolismo , Hormônio do Crescimento Humano/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Acromegalia/patologia , Acromegalia/terapia , Adulto , Idoso , Estudos de Casos e Controles , Terapia Combinada , Endopeptidases , Feminino , Seguimentos , Humanos , Proteínas Klotho , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
11.
Bone ; 132: 115197, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31870634

RESUMO

BACKGROUND: Liraglutide, a glucagon-like peptide-1 receptor agonist, has well known beneficial effects on glucose metabolism, and animal studies indicate that liraglutide also affects bone turnover by decreasing bone resorption. The primary objective of the study was to investigate the effect of liraglutide on bone turnover in patients with T2D. METHODS: The study was a randomized, double-blinded, clinical trial. Sixty participants with T2D were randomized to treatment with liraglutide 1.8 mg daily or placebo for 26 weeks. The primary endpoint was change in p-collagen I cross-linked C-terminal telopeptide (p-CTX). RESULTS: P-CTX increased in patients treated with liraglutide by 0.07 (0.03; 0.10) µg/L (p < 0.001) and in patients treated with placebo by 0.03 (0.00; 0.06) µg/L (p = 0.04), however, changes were not different between the groups (p = 0.16). Weight decreased in patients treated with liraglutide from baseline to week four (p < 0.001) and remained stable thereafter. P-procollagen type 1 N-terminal propeptide (P1NP) decreased in patients treated with liraglutide from baseline to week four (p < 0.01), increased between weeks 4 and 13 (p = 0.03), and remained elevated thereafter. Weight and p-P1NP did not change in patients treated with placebo. Hip bone mineral density (BMD) decreased in placebo treated patients from baseline to end of study, whereas no changes were seen in patients treated with liraglutide (p = 0.01 difference between groups). CONCLUSION: Liraglutide treatment for 26 weeks did not affect bone resorption and preserved hip BMD despite weight loss in patients with T2D, suggesting that liraglutide has some antiresorptive effect.


Assuntos
Reabsorção Óssea , Diabetes Mellitus Tipo 2 , Animais , Peso Corporal , Densidade Óssea , Reabsorção Óssea/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Método Duplo-Cego , Humanos , Liraglutida/uso terapêutico
12.
Diabetologia ; 62(3): 494-503, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30506451

RESUMO

AIMS/HYPOTHESIS: Lack of insulin and infection/inflammation are the two most common causes of diabetic ketoacidosis (DKA). We used insulin withdrawal followed by insulin administration as a clinical model to define effects on substrate metabolism and to test whether increased levels of counter-regulatory hormones and cytokines and altered adipose tissue signalling participate in the early phases of DKA. METHODS: Nine individuals with type 1 diabetes, without complications, were randomly studied twice, in a crossover design, for 5 h followed by 2.5 h high-dose insulin clamp: (1) insulin-controlled euglycaemia (control) and (2) after 14 h of insulin withdrawal in a university hospital setting. RESULTS: Insulin withdrawal increased levels of glucose (6.1 ± 0.5 vs 18.6 ± 0.5 mmol/l), NEFA, 3-OHB (127 ± 18 vs 1837 ± 298 µmol/l), glucagon, cortisol and growth hormone and decreased HCO3- and pH, without affecting catecholamine or cytokine levels. Whole-body energy expenditure, endogenous glucose production (1.55 ± 0.13 vs 2.70 ± 0.31 mg kg-1 min-1), glucose turnover, non-oxidative glucose disposal, lipid oxidation, palmitate flux (73 [range 39-104] vs 239 [151-474] µmol/min), protein oxidation and phenylalanine flux all increased, whereas glucose oxidation decreased. In adipose tissue, Ser473 phosphorylation of Akt and mRNA levels of G0S2 decreased, whereas CGI-58 (also known as ABHD5) mRNA increased. Protein levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase phosphorylations were unaltered. Insulin therapy decreased plasma glucose concentrations dramatically after insulin withdrawal, without any detectable effect on net forearm glucose uptake. CONCLUSIONS/INTERPRETATION: Release of counter-regulatory hormones and overall increased catabolism, including lipolysis, are prominent features of preacidotic ketosis induced by insulin withdrawal, and dampening of Akt insulin signalling and transcriptional modulation of ATGL activity are involved. The lack of any increase in net forearm glucose uptake during insulin therapy after insulin withdrawal indicates muscle insulin resistance. TRIAL REGISTRATION: ClinicalTrials.gov NCT02077348 FUNDING: This study was supported by Aarhus University and the KETO Study Group/Danish Agency for Science Technology and Innovation.


Assuntos
Tecido Adiposo/metabolismo , Citocinas/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Metabolismo Energético/fisiologia , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Cetose/metabolismo , Adulto , Glicemia/metabolismo , Estudos Cross-Over , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
J Appl Physiol (1985) ; 126(3): 569-577, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30571288

RESUMO

Endurance exercise training induces adaptations in metabolically active organs, but adaptations in human subcutaneous adipose tissue (scAT) remains incompletely understood. On the basis of animal studies, we hypothesized that endurance exercise training would increase the expression of proteins involved in lipolysis and glucose uptake in scAT. To test these hypotheses, 19 young and healthy males were randomized to either endurance exercise training (TR; age 18-24 yr; BMI 19.0-25.4 kg/m2) or a nonexercising control group (CON; age 21-35 yr; BMI 20.5-28.8 kg/m2). Abdominal subcutaneous fat biopsies and blood were obtained at rest before and after intervention. By using Western blotting and PCR, we determined expression of lipid droplet-associated proteins, various proteins involved in substrate metabolism, and mRNA abundance of cell surface G protein-coupled receptors (GPCRs). Adipose tissue insulin sensitivity was determined from fasting plasma insulin and nonesterified fatty acids (adipose tissue insulin resistance index; Adipo-IR). Adipo-IR improved in TR compared with CON ( P = 0.03). This was accompanied by increased insulin receptor (IR) protein expression in scAT with a 1.54-fold (SD 0.79) change from baseline in TR vs. 0.85 (SD 0.30) in CON ( P = 0.007). Additionally, hexokinase II (HKII) and succinate dehydrogenase complex subunit A (SDHA) protein increased in TR compared with CON ( P = 0.006 and P = 0.04, respectively). We did not observe changes in lipid droplet-associated proteins or mRNA abundance of GPCRs. Collectively, 10 weeks of endurance exercise training improved adipose tissue insulin sensitivity, which was accompanied by increased IR, HKII, and SDHA protein expression in scAT. We suggest that these adaptations contribute to an improved metabolic flexibility. NEW & NOTEWORTHY This study is the first to investigate the molecular adaptations in human subcutaneous adipose tissue (scAT) after endurance exercise training compared with a nonexercising control group. We show that endurance exercise training improves insulin sensitivity in human scAT, and this is accompanied by increased expression of insulin receptor, hexokinase II, and succinate dehydrogenase complex subunit A. Collectively, our data suggest that endurance exercise training induces molecular adaptations in human scAT, which may contribute to an improved metabolic flexibility.


Assuntos
Adaptação Fisiológica/fisiologia , Exercício Físico/fisiologia , Gordura Subcutânea/fisiologia , Adolescente , Adulto , Glicemia/metabolismo , Glicemia/fisiologia , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipídeos/fisiologia , Lipólise/fisiologia , Masculino , Obesidade/metabolismo , Obesidade/fisiopatologia , Receptores Acoplados a Proteínas G/metabolismo , Gordura Subcutânea/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Adulto Jovem
14.
Diabetes Obes Metab ; 20(10): 2504-2509, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885082

RESUMO

The present study (NCT01446276, ClinicalTrials.gov) assessed long-term effects of high-dose Resveratrol (RSV) on basal and insulin-mediated very low-density lipoprotein triglyceride (VLDL-TG), palmitate and glucose kinetics, and liver fat content in men with nonalcoholic fatty liver disease (NAFLD). Participants (n = 16) were non-diabetic, upper-body obese (BMI > 28 kg/m2 , WHR > 0.9) men with NAFLD who were randomized (1:1) in a double-blinded, placebo-controlled clinical trial to either RSV or placebo (500 mg 3 times daily) for 6 months. Magnetic resonance (MR) spectroscopy, dual-X-ray absorptiometry and MR imaging assessed liver fat content and body composition, respectively. 14 C-labeled VLDL-TG and 3 H-labeled glucose and palmitate tracers, in combination with indirect calorimetry and breath samples, were used to assess kinetics and substrate oxidations during basal and hyperinsulinaemic euglycaemic clamp conditions. RSV did not improve either basal or insulin-mediated VLDL-TG secretion, oxidation or clearance rates, nor did it affect palmitate or glucose turnover. Likewise, no changes in body composition or liver fat content occurred following RSV compared with placebo treatment. Therefore, RSV cannot be recommended for treatment of metabolic abnormalities in NAFLD.


Assuntos
Resistência à Insulina/fisiologia , Lipoproteínas VLDL/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Resveratrol/farmacologia , Triglicerídeos/metabolismo , Adulto , Composição Corporal/efeitos dos fármacos , Técnica Clamp de Glucose , Humanos , Cinética , Lipoproteínas VLDL/sangue , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/sangue , Obesidade/complicações , Obesidade/tratamento farmacológico , Resveratrol/uso terapêutico , Triglicerídeos/sangue
15.
Diabetes Obes Metab ; 20(9): 2264-2273, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29752759

RESUMO

AIMS: To test the hypothesis that brown adipose tissue (BAT) is a metformin target tissue by investigating in vivo uptake of [11 C]-metformin tracer in mice and studying in vitro effects of metformin on cultured human brown adipocytes. MATERIALS AND METHODS: Tissue-specific uptake of metformin was assessed in mice by PET/CT imaging after injection of [11 C]-metformin. Human brown adipose tissue was obtained from elective neck surgery and metformin transporter expression levels in human and murine BAT were determined by qPCR. Oxygen consumption in metformin-treated human brown adipocyte cell models was assessed by Seahorse XF technology. RESULTS: Injected [11 C]-metformin showed avid uptake in the murine interscapular BAT depot. Metformin exposure in BAT was similar to hepatic exposure. Non-specific inhibition of the organic cation transporter (OCT) protein by cimetidine administration eliminated BAT exposure to metformin, demonstrating OCT-mediated uptake. Gene expression profiles of OCTs in BAT revealed ample OCT3 expression in both human and mouse BAT. Incubation of a human brown adipocyte cell models with metformin reduced cellular oxygen consumption in a dose-dependent manner. CONCLUSION: These results support BAT as a putative metformin target.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Hipoglicemiantes/farmacocinética , Metformina/farmacocinética , Consumo de Oxigênio/efeitos dos fármacos , Animais , Cimetidina/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Transcriptoma
16.
PLoS One ; 12(9): e0185624, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957413

RESUMO

Brown adipose tissue with its constituent brown adipocytes is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. The molecular control of brown adipocyte differentiation and function has been extensively studied in mice, but relatively little is known about such regulatory mechanisms in humans, which in part is due to lack of human brown adipose tissue derived cell models. Here, we used retrovirus-mediated overexpression to stably integrate human telomerase reverse transcriptase (TERT) into stromal-vascular cell fractions from deep and superficial human neck adipose tissue biopsies from the same donor. The brown and white pre-adipocyte cell models (TERT-hBA and TERT-hWA, respectively) displayed a stable proliferation rate and differentiation until at least passage 20. Mature TERT-hBA adipocytes expressed higher levels of thermogenic marker genes and displayed a higher maximal respiratory capacity than mature TERT-hWA adipocytes. TERT-hBA adipocytes were UCP1-positive and responded to ß-adrenergic stimulation by activating the PKA-MKK3/6-p38 MAPK signaling module and increasing thermogenic gene expression and oxygen consumption. Mature TERT-hWA adipocytes underwent efficient rosiglitazone-induced 'browning', as demonstrated by strongly increased expression of UCP1 and other brown adipocyte-enriched genes. In summary, the TERT-hBA and TERT-hWA cell models represent useful tools to obtain a better understanding of the molecular control of human brown and white adipocyte differentiation and function as well as of browning of human white adipocytes.


Assuntos
Adipócitos/citologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Doadores de Tecidos , Adipócitos/efeitos dos fármacos , Biópsia , Linhagem Celular Transformada , Colforsina/farmacologia , Humanos , Isoproterenol/farmacologia , Pescoço , Retroviridae/genética , Rosiglitazona , Telomerase/genética , Termogênese , Tiazolidinedionas/farmacologia
17.
Sci Rep ; 7(1): 4052, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642579

RESUMO

Brown adipose tissue takes up large amounts of glucose during cold exposure in mice and humans. Here we report an induction of glucose transporter 1 expression and increased expression of several glycolytic enzymes in brown adipose tissue from cold-exposed mice. Accordingly, these genes were also induced after ß-adrenergic activation of cultured brown adipocytes, concomitant with accumulation of hypoxia inducible factor-1α (HIF-1α) protein levels. HIF-1α accumulation was dependent on uncoupling protein 1 and generation of mitochondrial reactive oxygen species. Expression of key glycolytic enzymes was reduced after knockdown of HIF-1α in mature brown adipocytes. Glucose consumption, lactate export and glycolytic capacity were reduced in brown adipocytes depleted of Hif-1α. Finally, we observed a decreased ß-adrenergically induced oxygen consumption in Hif-1α knockdown adipocytes cultured in medium with glucose as the only exogenously added fuel. These data suggest that HIF-1α-dependent regulation of glycolysis is necessary for maximum glucose metabolism in brown adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Glucose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Adipócitos Marrons/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Células Cultivadas , Temperatura Baixa , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Termogênese/efeitos dos fármacos , Termogênese/genética
18.
Surg Obes Relat Dis ; 13(9): 1515-1523, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28552744

RESUMO

BACKGROUND: Fibroblast growth factor 21 (FGF21) is elevated in obesity. OBJECTIVES: We investigated the circulating level of FGF21 and the expression of FGF21, beta-klotho (KLB), and FGF receptor 1 (FGFR1) in adipose tissue in relation to weight, fat distribution, and Roux-en-Y gastric bypass (RYGB)-induced weight loss. SETTING: The Department of Endocrinology at Aarhus University Hospital. METHODS: Thirty-one obese patients were enrolled. Visceral adipose tissue volume measured by magnetic resonance imaging, hepatic fat content measured by magnetic resonance spectroscopy, and body composition measured by dual-energy x-ray absorbtiometry were determined at baseline and 12 months after RYGB. Fasting blood samples and subcutaneous and visceral adipose tissue samples were obtained. Moreover, 25 lean controls were enrolled. RESULTS: FGF21 was significantly elevated in obese patients compared with lean patients (281±151 pg/mL versus 149±99 pg/mL, P<.05). RYGB-induced weight loss resulted in a smaller reduction in FGF21 (P = .08). However, a significant reduction was seen in obese patients with initially high FGF21 levels (42% reduction, P<.001). A significant association was found between FGF21 and hepatic fat content at baseline (r = 0.40, P<.05). Moreover, ΔFGF21 was significantly associated with Δhepatic fat content after RYGB (r = 0.39, P<.05). FGF21 mRNA was not detectable in AT from either lean or obese patients. KLB and FGFR1 were upregulated in AT in relation to obesity, and both were further increased 12 months after RYGB. CONCLUSIONS: FGF21 is reduced in relation to weight loss in patients with initial high levels of FGF21 and this reduction is significantly associated with a reduction in hepatic fat content. Thus, changes in FGF21 after RYGB-induced weight loss are closely related to changes in liver fat content.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Adulto , Índice de Massa Corporal , Feminino , Derivação Gástrica , Expressão Gênica/fisiologia , Humanos , Proteínas Klotho , Fígado/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/cirurgia , Estudos Prospectivos , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Redução de Peso/fisiologia
19.
Int J Mol Sci ; 18(5)2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481291

RESUMO

Brown adipose tissue thermogenesis at the cost of energy is not only important for the development of obesity, but also possesses great promise in anti-obesity treatment. Uncoupling protein 1 (UCP1) expression has been reported to be under control of the intracellular deacetylase SIRT1. Here, we investigated the effect and mechanism of inflammation and sirtuin-1 (SIRT1) activation on the induction of thermogenic genes in immortalized brown adipocytes incubated with LPS or IL1ß and mice with elevated inflammatory tone. In vitro stimulation of brown adipocytes with dibutyryl cyclic adenosine monophosthate (dbcAMP) reduced the expression of deleted in breast cancer-1 (Dbc1) (SIRT1 inhibitor) and increased the Ucp1 expression. Silencing of SIRT1 attenuated dbcAMP induction of Ucp1. In contrast, IL1ß increased the expression of Dbc1 and greatly reduced the induction of Ucp1. Similarly, in vivo studies revealed decreased expression of Ucp1 in brown adipose tissue (BAT) in mice chronically infused with LPS. Resveratrol, a known SIRT1 activator, partly rescued the Ucp1 downregulation by inflammation in both the cell cultures and mice. Here, we describe how the expression of Ucp1 in BAT is controlled via SIRT1 and is reduced under inflammation and can be rescued by SIRT1 activation by resveratrol. We suggest the reduced UCP1 expression under inflammation is mediated by the increased expression of DBC1, which inhibits SIRT1 activity.


Assuntos
Adipócitos Marrons/metabolismo , Regulação para Baixo , Proteínas do Tecido Nervoso/metabolismo , Sirtuína 1/metabolismo , Proteína Desacopladora 1/genética , Adipócitos Marrons/efeitos dos fármacos , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Inflamação/metabolismo , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Resveratrol , Sirtuína 1/genética , Estilbenos/farmacologia , Proteína Desacopladora 1/metabolismo
20.
Diabetologia ; 60(1): 143-152, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27734104

RESUMO

AIMS/HYPOTHESIS: The aims of this study were to determine the role of lipolysis in hypoglycaemia and define the underlying intracellular mechanisms. METHODS: Nine healthy volunteers were randomised to treatment order of three different treatments (crossover design). Treatments were: (1) saline control; (2) hyperinsulinaemic hypoglycaemia (HH; i.v. bolus of 0.1 U/kg insulin); and (3) hyperinsulinaemic euglycaemia (HE; i.v. bolus of 0.1 U/kg insulin and 20% glucose). Inclusion criteria were that volunteers were healthy, aged >18 years, had a BMI between 19 and 26 kg/m2, and provided both written and oral informed consent. Exclusion criteria were the presence of a known chronic disease (including diabetes mellitus, epilepsy, ischaemic heart disease and cardiac arrhythmias) and regular use of prescription medication. The data was collected at the medical research facilities at Aarhus University Hospital, Denmark. The primary outcome was palmitic acid flux. Participants were blinded to intervention order, but caregivers were not. RESULTS: Adrenaline (epinephrine) and glucagon concentrations were higher during HH than during both HE and control treatments. NEFA levels and lipid oxidation rates (determined by indirect calorimetry) returned to control levels after 105 min. Palmitate flux was increased to control levels during HH (p = NS) and was more than twofold higher than during HE (overall mean difference between HH vs HE, 114 [95% CI 64, 165 µmol/min]; p < 0.001). In subcutaneous adipose tissue biopsies, we found elevated levels of hormone-sensitive lipase (HSL) and perilipin-1 phosphorylation 30 min after insulin injection during HH compared with both control and HE. There were no changes in the levels of adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58) or G0/G1 switch gene 2 (G0S2) proteins. Insulin-stimulated phosphorylation of Akt and mTOR were unaffected by hypoglycaemia. Expression of the G0S2 gene increased during HE and HH compared with control, without changes in ATGL (also known as PNPLA2) or CGI-58 (also known as ABHD5) mRNA levels. CONCLUSIONS/INTERPRETATION: These findings suggest that NEFAs become a major fuel source during insulin-induced hypoglycaemia and that lipolysis may be an important component of the counter-regulatory response. These effects appear to be mediated by rapid stimulation of protein kinase A (PKA) and HSL, compatible with activation of the ß-adrenergic catecholamine signalling pathway. TRIAL REGISTRATION: ClinicalTrials.gov NCT01919788 FUNDING: : The study was funded by Aarhus University, the Novo Nordisk Foundation and the KETO Study Group/Danish Agency for Science Technology and Innovation (grant no. 0603-00479, to NM).


Assuntos
Tecido Adiposo/metabolismo , Hipoglicemia/induzido quimicamente , Hipoglicemia/fisiopatologia , Insulina/farmacologia , Lipólise/fisiologia , Adolescente , Adulto , Glicemia/metabolismo , Peptídeo C/sangue , Estudos Cross-Over , Epinefrina/sangue , Ácidos Graxos não Esterificados/sangue , Feminino , Glucagon/sangue , Humanos , Insulina/sangue , Ácido Láctico/sangue , Metabolismo dos Lipídeos/fisiologia , Peroxidação de Lipídeos/fisiologia , Masculino , Norepinefrina/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...