Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31236510

RESUMO

Millions of people worldwide are required to work when their physiology is tuned for sleep. By forcing wakefulness out of the body's normal schedule, shift workers face numerous adverse health consequences, including gastrointestinal problems, sleep problems, and higher rates of some diseases, including cancers. Recent studies have developed protocols to simulate shift work in rodents with the intention of assessing the effects of night-shift work on subsequent sleep (Grønli et al., 2017). These studies have already provided important contributions to the understanding of the metabolic consequences of shift work (Arble et al., 2015; Marti et al., 2016; Opperhuizen et al., 2015) and sleep-wake-specific impacts of night-shift work (Grønli et al., 2017). However, our understanding of the causal mechanisms underlying night-shift-related sleep disturbances is limited. In order to advance toward a mechanistic understanding of sleep disruption in shift work, we model these data with two different approaches. First we apply a simple homeostatic model to quantify differences in the rates at which sleep need, as measured by slow wave activity during slow wave sleep (SWS) rises and falls. Second, we develop a simple and novel mathematical model of rodent sleep and use it to investigate the timing of sleep in a simulated shift work protocol (Grønli et al., 2017). This mathematical framework includes the circadian and homeostatic processes of the two-process model, but additionally incorporates a stochastic process to model the polyphasic nature of rodent sleep. By changing only the time at which the rodents are forced to be awake, the model reproduces some key experimental results from the previous study, including correct proportions of time spent in each stage of sleep as a function of circadian time and the differences in total wake time and SWS bout durations in the rodents representing night-shift workers and those representing day-shift workers. Importantly, the model allows for deeper insight into circadian and homeostatic influences on sleep timing, as it demonstrates that the differences in SWS bout duration between rodents in the two shifts is largely a circadian effect. Our study shows the importance of mathematical modeling in uncovering mechanisms behind shift work sleep disturbances and it begins to lay a foundation for future mathematical modeling of sleep in rodents.

2.
Nutrients ; 8(11)2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27834804

RESUMO

Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10) or active (ZT14-22) phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR). Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery.


Assuntos
Ritmo Circadiano/fisiologia , Ingestão de Alimentos/fisiologia , Expressão Gênica/fisiologia , Homeostase/fisiologia , Metabolismo/fisiologia , Tolerância ao Trabalho Programado/fisiologia , Animais , Temperatura Corporal , Peso Corporal , Humanos , Fígado/metabolismo , Masculino , Modelos Animais , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...